
Annamaria Vezzani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1. Epilepsia, 2011, 52, 158-174.	5.1	1,454
2	The role of inflammation in epilepsy. Nature Reviews Neurology, 2011, 7, 31-40.	10.1	1,442
3	Brain Inflammation in Epilepsy: Experimental and Clinical Evidence. Epilepsia, 2005, 46, 1724-1743.	5.1	921
4	Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases. Journal of Neuroscience, 2003, 23, 8692-8700.	3.6	790
5	Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nature Medicine, 2010, 16, 413-419.	30.7	777
6	Glia and epilepsy: excitability and inflammation. Trends in Neurosciences, 2013, 36, 174-184.	8.6	656
7	Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiology of Disease, 2008, 29, 142-160.	4.4	618
8	<i>Sox2</i> deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development (Cambridge), 2004, 131, 3805-3819.	2.5	587
9	Epilepsy. Nature Reviews Disease Primers, 2018, 4, 18024.	30.5	541
10	Interleukin-1β Immunoreactivity and Microglia Are Enhanced in the Rat Hippocampus by Focal Kainate Application: Functional Evidence for Enhancement of Electrographic Seizures. Journal of Neuroscience, 1999, 19, 5054-5065.	3.6	536
11	The role of cytokines in the pathophysiology of epilepsy. Brain, Behavior, and Immunity, 2008, 22, 797-803.	4.1	474
12	Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, 2015, 96, 70-82.	4.1	473
13	Epilepsy and brain inflammation. Experimental Neurology, 2013, 244, 11-21.	4.1	466
14	Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nature Reviews Neurology, 2019, 15, 459-472.	10.1	463
15	Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends in Neurosciences, 1999, 22, 25-30.	8.6	451
16	Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. European Journal of Neuroscience, 2000, 12, 2623-2633.	2.6	448
17	Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11534-11539.	7.1	424
18	The role of inflammation in epileptogenesis. Neuropharmacology, 2013, 69, 16-24.	4.1	393

#	Article	IF	CITATIONS
19	Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neuroscience Letters, 1984, 48, 273-278.	2.1	387
20	Interleukin-1Î ² contributes to the generation of experimental febrile seizures. Annals of Neurology, 2005, 57, 152-155.	5.3	379
21	Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 2020, 72, 606-638.	16.0	360
22	Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain, 2018, 141, 391-408.	7.6	352
23	Infections, inflammation and epilepsy. Acta Neuropathologica, 2016, 131, 211-234.	7.7	348
24	Functional Role of Inflammatory Cytokines and Antiinflammatory Molecules in Seizures and Epileptogenesis. Epilepsia, 2002, 43, 30-35.	5.1	343
25	IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain, Behavior, and Immunity, 2011, 25, 1281-1289.	4.1	334
26	Advances in the development of biomarkers for epilepsy. Lancet Neurology, The, 2016, 15, 843-856.	10.2	283
27	Interleukin-1β Biosynthesis Inhibition Reduces Acute Seizures and Drug Resistant Chronic Epileptic Activity in Mice. Neurotherapeutics, 2011, 8, 304-315.	4.4	260
28	Acute encephalopathy with inflammation-mediated status epilepticus. Lancet Neurology, The, 2011, 10, 99-108.	10.2	251
29	The IL-1Î ² system in epilepsy-associated malformations of cortical development. Neurobiology of Disease, 2006, 24, 128-143.	4.4	249
30	A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1Â. Brain, 2008, 131, 3256-3265.	7.6	246
31	Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance. Journal of Neuroscience, 2002, 22, 5833-5839.	3.6	233
32	Epileptogenesis Provoked by Prolonged Experimental Febrile Seizures: Mechanisms and Biomarkers. Journal of Neuroscience, 2010, 30, 7484-7494.	3.6	228
33	Anticonvulsant and Antiepileptogenic Effects Mediated by Adeno-Associated Virus Vector Neuropeptide Y Expression in the Rat Hippocampus. Journal of Neuroscience, 2004, 24, 3051-3059.	3.6	222
34	Seizureâ€induced brainâ€borne inflammation sustains seizure recurrence and blood–brain barrier damage. Annals of Neurology, 2012, 72, 82-90.	5.3	218
35	Epilepsy biomarkers. Epilepsia, 2013, 54, 61-69.	5.1	215
36	Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiology of Disease, 2003, 14, 494-503.	4.4	214

#	Article	IF	CITATIONS
37	Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood–brain barrier dysfunction. Neurobiology of Disease, 2015, 78, 115-125.	4.4	213
38	New Roles for Interleukin-1 Beta in the Mechanisms of Epilepsy. Epilepsy Currents, 2007, 7, 45-50.	0.8	208
39	Febrile infectionâ€related epilepsy syndrome treated with anakinra. Annals of Neurology, 2016, 80, 939-945.	5.3	208
40	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	5.1	206
41	Modulator Effects of Interleukin-1Â and Tumor Necrosis Factor-Â on AMPA-Induced Excitotoxicity in Mouse Organotypic Hippocampal Slice Cultures. Journal of Neuroscience, 2005, 25, 6734-6744.	3.6	204
42	Role of the receptors in the development and maintenance of hippocampal kindling in rats. Neuroscience Letters, 1988, 87, 63-68.	2.1	191
43	Inhibition of the Multidrug Transporter P-Glycoprotein Improves Seizure Control in Phenytoin-treated Chronic Epileptic Rats. Epilepsia, 2006, 47, 672-680.	5.1	191
44	Glia as a source of cytokines: Implications for neuronal excitability and survival. Epilepsia, 2008, 49, 24-32.	5.1	188
45	Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathology and Applied Neurobiology, 2018, 44, 91-111.	3.2	186
46	Tumor necrosis factor-α inhibits seizures in mice via p75 receptors. Annals of Neurology, 2005, 57, 804-812.	5.3	182
47	Brain inflammation as a biomarker in epilepsy. Biomarkers in Medicine, 2011, 5, 607-614.	1.4	182
48	Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain, 2011, 134, 1015-1032.	7.6	180
49	Reduced anxiety and improved stress coping ability in mice lacking NPY‥2 receptors. European Journal of Neuroscience, 2003, 18, 143-148.	2.6	173
50	Inflammation and prevention of epileptogenesis. Neuroscience Letters, 2011, 497, 223-230.	2.1	172
51	Astrocyte immune responses in epilepsy. Glia, 2012, 60, 1258-1268.	4.9	168
52	Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience, 2006, 137, 301-308.	2.3	165
53	Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-11² production. Neurobiology of Disease, 2008, 31, 327-333.	4.4	162
54	Epilepsy and Inflammation in the Brain: Overview and Pathophysiology. Epilepsy Currents, 2014, 14, 3-7.	0.8	162

#	Article	IF	CITATIONS
55	Immunity and Inflammation in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022699.	6.2	162
56	Inactivation of Caspase-1 in Rodent Brain: A Novel Anticonvulsive Strategy. Epilepsia, 2006, 47, 1160-1168.	5.1	159
57	High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products. Experimental Neurology, 2011, 232, 143-148.	4.1	159
58	Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. Journal of Internal Medicine, 2011, 270, 319-326.	6.0	157
59	Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience, 1995, 69, 831-845.	2.3	155
60	Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiology of Disease, 2013, 59, 183-193.	4.4	154
61	Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy?. Neuropeptides, 2004, 38, 245-252.	2.2	150
62	Inflammatory Response and Glia Activation in Developing Rat Hippocampus after Status Epilepticus. Epilepsia, 2005, 46, 113-117.	5.1	149
63	Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiology of Disease, 2017, 99, 12-23.	4.4	149
64	Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain, 2008, 131, 1506-1515.	7.6	146
65	Disulfide-Containing High Mobility Group Box-1 Promotes <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in Hippocampal Neurons. Antioxidants and Redox Signaling, 2014, 21, 1726-1740.	5.4	141
66	Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiology of Disease, 2013, 58, 102-114.	4.4	139
67	Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain, 2019, 142, e39-e39.	7.6	137
68	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	5.1	131
69	Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Research Reviews, 1996, 22, 27-50.	9.0	130
70	Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. European Journal of Neuroscience, 1999, 11, 3767-3776.	2.6	129
71	GABAA currents are decreased by IL-11 ² in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiology of Disease, 2015, 82, 311-320.	4.4	129
72	Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Medicine, 2004, 2, 37.	5.5	128

#	Article	IF	CITATIONS
73	White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain, 2020, 143, 2454-2473.	7.6	123
74	Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology, 2020, 167, 107742.	4.1	121
75	Inflammation and Epilepsy. Epilepsy Currents, 2005, 5, 1-6.	0.8	114
76	The antiâ€epileptic actions of neuropeptide Y in the hippocampus are mediated by Y ₂ and not Y ₅ receptors. European Journal of Neuroscience, 2005, 22, 1417-1430.	2.6	114
77	Blood–brain barrier dysfunction–induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia, 2012, 53, 37-44.	5.1	111
78	Recombinant AAVâ€mediated expression of galanin in rat hippocampus suppresses seizure development. European Journal of Neuroscience, 2003, 18, 2087-2092.	2.6	109
79	Determination of Endogenous Acetylcholine Release in Freely Moving Rats by Transstriatal Dialysis Coupled to a Radioenzymatic Assay: Effect of Drugs. Journal of Neurochemistry, 1987, 48, 1459-1465.	3.9	107
80	Interleukinâ€∃ System in CNS Stress. Annals of the New York Academy of Sciences, 2007, 1113, 173-177.	3.8	105
81	Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006, 172, 27-37.	2.3	103
82	Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Research Reviews, 1996, 22, 27-50.	9.0	103
83	In Vivo Brain Dialysis of Amino Acids and Simultaneous EEG Measurements Following Intrahippocampal Quinolinic Acid Injection: Evidence for a Dissociation Between Neurochemical Changes and Seizures. Journal of Neurochemistry, 1985, 45, 335-344.	3.9	102
84	Brain-derived neurotrophic factor immunoreactivity in the limbic system of rats after acute seizures and during spontaneous convulsions: temporal evolution of changes as compared to neuropeptide Y. Neuroscience, 1999, 90, 1445-1461.	2.3	99
85	Modulation of neuronal excitability by immune mediators in epilepsy. Current Opinion in Pharmacology, 2016, 26, 118-123.	3.5	98
86	High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain, Behavior, and Immunity, 2018, 72, 14-21.	4.1	97
87	Longâ€lasting proâ€lctogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia, 2012, 53, 1887-1897.	5.1	94
88	Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiology of Disease, 2011, 43, 507-515.	4.4	91
89	Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience, 2002, 110, 237-243.	2.3	90
90	Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. Journal of Clinical Investigation, 2017, 127, 2118-2132.	8.2	90

#	Article	IF	CITATIONS
91	Febrile Infection–Related Epilepsy Syndrome: Clinical Review and Hypotheses of Epileptogenesis. Neuropediatrics, 2017, 48, 005-018.	0.6	89
92	Antiepileptic Effects of Botulinum Neurotoxin E. Journal of Neuroscience, 2005, 25, 1943-1951.	3.6	87
93	Altered expression of GABAa and GABAb receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Neuroscience, 2005, 134, 691-704.	2.3	87
94	A Pilot Study on Brain-to-Plasma Partition of 10,11-Dyhydro-10-hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 Brain Expression in Epilepsy Patients Not Responding to Oxcarbazepine. Epilepsia, 2005, 46, 1613-1619.	5.1	86
95	Age-dependent vascular changes induced by status epilepticus in rat forebrain: Implications for epileptogenesis. Neurobiology of Disease, 2009, 34, 121-132.	4.4	86
96	IL-1Î ² is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Neurobiology of Disease, 2011, 44, 259-269.	4.4	85
97	Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection–related epilepsy syndrome. Epilepsia Open, 2019, 4, 344-350.	2.4	85
98	Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Review of Neurotherapeutics, 2015, 15, 1081-1092.	2.8	84
99	Anticonvulsant properties of BIBP3226, a nonâ€peptide selective antagonist at neuropeptide Y Y 1 receptors. European Journal of Neuroscience, 1998, 10, 757-759.	2.6	81
100	Dynamic induction of the long pentraxin PTX3 in the CNS after limbic seizures: evidence for a protective role in seizure-induced neurodegeneration. Neuroscience, 2001, 105, 43-53.	2.3	79
101	Impulse flow dependency of galanin release in vivo in the rat ventral hippocampus Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8047-8051.	7.1	78
102	Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X ₇ receptorâ€mediated ILâ€1β release. Journal of Neurochemistry, 2008, 106, 271-280.	3.9	78
103	Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: Implications for seizure susceptibility. Neuroscience, 2009, 161, 293-300.	2.3	78
104	Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. European Journal of Neuroscience, 2002, 16, 843-849.	2.6	77
105	In vivo imaging of glia activation using ¹ Hâ€magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia, 2012, 53, 1907-1916.	5.1	75
106	Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood–brain barrier permeability. Neuroscience, 2008, 151, 303-312.	2.3	74
107	Inflammation and Epilepsy: Preclinical Findings and Potential Clinical Translation. Current Pharmaceutical Design, 2018, 23, 5569-5576.	1.9	74
108	Current understanding and neurobiology of epileptic encephalopathies. Neurobiology of Disease, 2016, 92, 72-89.	4.4	71

#	Article	IF	CITATIONS
109	Autoradiographic analysis of neuropeptide Y receptor binding sites in the rat hippocampus after kainic acid-induced limbic seizures. Neuroscience, 1996, 70, 47-55.	2.3	70
110	Distinct Changes in Peptide YY Binding to, and mRNA Levels of, Y1 and Y2 Receptors in the Rat Hippocampus Associated with Kindling Epileptogenesis. Journal of Neurochemistry, 1998, 70, 1615-1622.	3.9	70
111	Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain, Behavior, and Immunity, 2016, 53, 138-158.	4.1	70
112	[3H]Norepinephrine Release from Hippocampal Slices Is an In Vitro Biochemical Tool for Investigating the Pharmacological Properties of Excitatory Amino Acid Receptors. Journal of Neurochemistry, 1987, 49, 1438-1442.	3.9	69
113	Inflammation and epilepsy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 107, 163-175.	1.8	69
114	Enhanced neuropeptide Y release in the hippocampus is associated with chronic seizure susceptibility in kainic acid treated rats. Brain Research, 1994, 660, 138-143.	2.2	68
115	Pharmacological targeting of brain inflammation in epilepsy: Therapeutic perspectives from experimental and clinical studies. Epilepsia Open, 2018, 3, 133-142.	2.4	68
116	Electrical Kindling of the Hippocampus is Associated with Functional Activation of Neuropeptide Y-containing Neurons. European Journal of Neuroscience, 1993, 5, 1534-1538.	2.6	67
117	The dual role of TNF-1 \pm and its receptors in seizures. Experimental Neurology, 2013, 247, 267-271.	4.1	67
118	Inflammation and reactive oxygen species in status epilepticus: Biomarkers and implications for therapy. Epilepsy and Behavior, 2019, 101, 106275.	1.7	67
119	A peptidase-resistant cyclic octapeptide analogue of somatostatin (SMS 201–995) modulates seizures induced by quinolinic and kainic acids differently in the rat hippocampus. Neuropharmacology, 1991, 30, 345-352.	4.1	64
120	Gene therapy in epilepsy: The focus on NPY. Peptides, 2007, 28, 377-383.	2.4	62
121	Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Therapy, 2010, 17, 643-652.	4.5	62
122	Functional effects of d-Phe-c[Cys-Tyr-d-Trp-Lys-Val-Cys]-Trp-NH2 and differential changes in somatostatin receptor messenger RNAs, binding sites and somatostatin release in kainic acid-treated rats. Neuroscience, 1995, 65, 1087-1097.	2.3	61
123	Functional changes in somatostatin and neuropeptide Y containing neurons in the rat hippocampus in chronic models of limbic seizures. Epilepsy Research, 1996, 26, 267-279.	1.6	61
124	Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis?. Expert Opinion on Drug Safety, 2015, 14, 583-592.	2.4	61
125	Increased Expression of GAP-43, Somatostatin and Neuropeptide Y mRNA in the Hippocampus During Development of Hippocampal Kindling in Rats. European Journal of Neuroscience, 1993, 5, 1312-1320.	2.6	60
126	In vivo and in vitro studies on the regulation of cholinergic neurotransmission in striatum, hippocampus and cortex of aged rats. Brain Research, 1986, 374, 212-218.	2.2	58

#	Article	IF	CITATIONS
127	Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?. Epilepsia, 2020, 61, 359-386.	5.1	57
128	NPY gene transfer in the hippocampus attenuates synaptic plasticity and learning. Hippocampus, 2008, 18, 564-574.	1.9	55
129	n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain, 2018, 141, 3130-3143.	7.6	55
130	ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Current Opinion in Investigational Drugs, 2010, 11, 43-50.	2.3	55
131	Selective and persistent upregulation of mdr1b mRNA and P-glycoprotein in the parahippocampal cortex of chronic epileptic rats. Epilepsy Research, 2004, 60, 203-213.	1.6	54
132	Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. Brain, 2011, 134, 2828-2843.	7.6	54
133	Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiology of Disease, 2016, 93, 146-155.	4.4	54
134	Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathology, 2019, 29, 351-365.	4.1	54
135	Growth-associated Protein 43 Expression in Hippocampal Molecular Layer of Chronic Epileptic Rats Treated with Cycloheximide. Epilepsia, 2005, 46, 125-128.	5.1	53
136	Effect of various calcium channel blockers on three different models of limbic seizures in rats. Neuropharmacology, 1988, 27, 451-458.	4.1	52
137	Electrocorticographic Dynamics as a Novel Biomarker in Five Models of Epileptogenesis. Journal of Neuroscience, 2017, 37, 4450-4461.	3.6	50
138	Neuroprotective Effect of Somatostatin on Nonapoptotic NMDA-Induced Neuronal Death: Role of Cyclic GMP. Journal of Neurochemistry, 2002, 68, 319-327.	3.9	49
139	Does Brain Inflammation Mediate Pathological Outcomes in Epilepsy?. Advances in Experimental Medicine and Biology, 2014, 813, 169-183.	1.6	49
140	Stimulation of 5â€HT _{1A} receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats. British Journal of Pharmacology, 1996, 119, 813-818.	5.4	48
141	Determinants of drug brain uptake in a rat model of seizure-associated malformations of cortical development. Neurobiology of Disease, 2006, 24, 429-442.	4.4	47
142	Basic mechanisms of status epilepticus due to infection and inflammation. Epilepsia, 2009, 50, 56-57.	5.1	47
143	Preventing epileptogenesis: A realistic goal?. Pharmacological Research, 2016, 110, 96-100.	7.1	47
144	The <scp>ENIGMAâ€Epilepsy</scp> working group: Mapping disease from large data sets. Human Brain Mapping, 2022, 43, 113-128.	3.6	47

#	Article	IF	CITATIONS
145	Anti-somatostatin antibody enhances the rate of hippocampal kindling in rats. Brain Research, 1993, 602, 148-152.	2.2	46
146	Somatostatin release is enhanced in the hippocampus of partially and fully kindled rats. Neuroscience, 1992, 51, 41-46.	2.3	44
147	Therapeutic potential of new antiinflammatory drugs. Epilepsia, 2011, 52, 67-69.	5.1	44
148	Finding a better drug for epilepsy: Antiinflammatory targets. Epilepsia, 2012, 53, 1113-1118.	5.1	44
149	Functional Role of Proinflammatory and Anti-Inflammatory Cytokines in Seizures. Advances in Experimental Medicine and Biology, 2004, 548, 123-133.	1.6	43
150	Introduction. Epilepsia, 2011, 52, 1-4.	5.1	43
151	Functional and histological consequences of quinolinic and kainic acid-induced seizures on hippocampal somatostatin neurons. Neuroscience, 1991, 41, 127-135.	2.3	39
152	Inhibition of monoacylglycerol lipase terminates diazepamâ€resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet. Epilepsia, 2018, 59, 79-91.	5.1	37
153	Increased preproneuropeptide Y mRNA in the rat hippocampus during the development of hippocampal kindling: Comparison with the expression of preprosomatostatin mRNA. Neuroscience Letters, 1991, 132, 175-178.	2.1	36
154	Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells. Molecular Neurobiology, 2018, 55, 7500-7511.	4.0	36
155	Common data elements and data management: Remedy to cure underpowered preclinical studies. Epilepsy Research, 2017, 129, 87-90.	1.6	35
156	Proposal to optimize evaluation and treatment of Febrile infectionâ€related epilepsy syndrome (FIRES): A Report from FIRES workshop. Epilepsia Open, 2021, 6, 62-72.	2.4	35
157	Trans-synaptic Modulation of Striatal ACh ReleaseIn Vivoby the Parafascicular Thalamic Nucleus. European Journal of Neuroscience, 1995, 7, 1117-1120.	2.6	34
158	Modulatory Role of Neuropeptides in Seizures Induced in Rats by Stimulation of Glutamate Receptors. Journal of Nutrition, 2000, 130, 1046S-1048S.	2.9	34
159	Microglia proliferation plays distinct roles in acquired epilepsy depending on disease stages. Epilepsia, 2021, 62, 1931-1945.	5.1	33
160	Neuropeptide Y Overexpression Using Recombinant Adenoassociated Viral Vectors. Neurotherapeutics, 2009, 6, 300-306.	4.4	32
161	Extracellular Somatostatin Measured by Microdialysis in the Hippocampus of Freely Moving Rats: Evidence for Neuronal Release. Journal of Neurochemistry, 1993, 60, 671-677.	3.9	31
162	Alternative Splicing at the C-terminal but not at the N-terminal Domain of the NMDA Receptor NR1 is Altered in the Kindled Hippocampus. European Journal of Neuroscience, 1995, 7, 2513-2517.	2.6	31

Annamaria Vezzani

#	Article	IF	CITATIONS
163	Pilocarpine-Induced Seizures Revisited: What Does the Model Mimic?. Epilepsy Currents, 2009, 9, 146-148.	0.8	30
164	The immunoproteasome l²5i subunit is a key contributor to ictogenesis in a rat model of chronic epilepsy. Brain, Behavior, and Immunity, 2015, 49, 188-196.	4.1	30
165	Climate change and epilepsy: Insights from clinical and basic science studies. Epilepsy and Behavior, 2021, 116, 107791.	1.7	30
166	Anticonvulsant drugs effective against human temporal lobe epilepsy prevent seizures but not neurotoxicity induced in rats by quinolinic acid: electroencephalographic, behavioral and histological assessments. Journal of Pharmacology and Experimental Therapeutics, 1986, 239, 256-63.	2.5	30
167	Mode of action of gamma-butyrolactone on the central cholinergic system. Naunyn-Schmiedeberg's Archives of Pharmacology, 1983, 322, 42-48.	3.0	28
168	Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt–Jakob Disease. Journal of Neuroscience, 2017, 37, 10278-10289.	3.6	28
169	mi <scp>R</scp> 147b: <scp>A</scp> novel key regulator of interleukin 1 betaâ€mediated inflammation in human astrocytes. Glia, 2018, 66, 1082-1097.	4.9	28
170	Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics, 2018, 15, 470-488.	4.4	27
171	Autoradiographical analysis of excitatory amino acid binding sites in rat hippocampus during the development of hippocampal kindling. Brain Research, 1990, 526, 113-121.	2.2	25
172	Expression of glutamate receptor subtypes in the spinal cord of control andmnd mice, a model of motor neuron disorder. Journal of Neuroscience Research, 2002, 70, 553-560.	2.9	25
173	Innate Immunity and Inflammation in Temporal Lobe Epilepsy: New Emphasis on the Role of Complement Activation. Epilepsy Currents, 2008, 8, 75-77.	0.8	25
174	Before Epilepsy Unfolds: Finding the epileptogenesis switch. Nature Medicine, 2012, 18, 1626-1627.	30.7	25
175	Epileptic Encephalitis: The Role of the Innate and Adaptive Immune System. Brain Pathology, 2012, 22, 412-421.	4.1	25
176	Extracellular glutamate levels in the hypothalamus and hippocampus of rats after acute or chronic oral intake of monosodium glutamate. Neuroscience Letters, 1995, 193, 45-48.	2.1	24
177	Plasticity of somatostatin and somatostatin sst2A receptors in the rat dentate gyrus during kindling epileptogenesis. European Journal of Neuroscience, 2004, 19, 2531-2538.	2.6	24
178	Antiepileptogenesis and disease modification: Progress, challenges, and the path forward—Report of the Preclinical Working Group of the 2018 NINDSâ€sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open, 2021, 6, 276-296.	2.4	24
179	Norepinephrine modulates seizures induced by quinolinic acid in rats: selective and distinct roles of α-adrenoceptor subtypes. European Journal of Pharmacology, 1987, 138, 309-318.	3.5	23
180	The association between systemic autoimmune disorders and epilepsy and its clinical implications. Brain, 2021, 144, 372-390.	7.6	23

#	Article	IF	CITATIONS
181	Glia–Neuron Interactions in Ictogenesis and Epileptogenesis. , 2012, , 618-634.		23
182	A systemsâ€level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	22
183	Chronic infusion of quinolinic acid in rat striatum: effects on discrete neuronal populations. Journal of the Neurological Sciences, 1992, 108, 129-136.	0.6	21
184	The promise of gene therapy for the treatment of epilepsy. Expert Review of Neurotherapeutics, 2007, 7, 1685-1692.	2.8	21
185	Brain Inflammation and Seizures: Evolving Concepts and New Findings in the Last 2 Decades. Epilepsy Currents, 2020, 20, 40S-43S.	0.8	21
186	Gene Therapy in Epilepsy. Epilepsy Currents, 2004, 4, 87-90.	0.8	20
187	In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance. Brain Research, 2006, 1086, 201-213.	2.2	20
188	In-depth characterization of a mouse model of post-traumatic epilepsy for biomarker and drug discovery. Acta Neuropathologica Communications, 2021, 9, 76.	5.2	20
189	Functional activation of somatostatin- and neuropeptide Y-containing neurons in the entorhinal cortex of chronically epileptic rats. Neuroscience, 1996, 75, 551-557.	2.3	19
190	Neuropeptide Y Y5 receptors inhibit kindling acquisition in rats. Regulatory Peptides, 2005, 125, 79-83.	1.9	19
191	Quinolinic acid-induced seizures, but not nerve cell death, are associated with extracellular Ca2+ decrease assessed in the hippocampus by brain dialysis. Brain Research, 1988, 454, 289-297.	2.2	18
192	Status of somatostatin receptor messenger RNAs and binding sites in rat brain during kindling epileptogenesis. Neuroscience, 1996, 75, 857-868.	2.3	18
193	Cellular localization of neuropeptide-Y receptors in the rat hippocampus. NeuroReport, 1996, 7, 1475-1480.	1.2	18
194	Biomarkers of Epileptogenesis: The Focus on Glia and Cognitive Dysfunctions. Neurochemical Research, 2017, 42, 2089-2098.	3.3	18
195	Neuronal hyperexcitability and seizures are associated with changes in glial–neuronal interactions in the hippocampus of a mouse model of epilepsy with mental retardation. Journal of Neurochemistry, 2010, 115, 1445-1454.	3.9	17
196	Highâ€mobility group box 1 as a predictive biomarker for drugâ€resistant epilepsy: A proofâ€ofâ€concept study. Epilepsia, 2022, 63, e1.	5.1	17
197	Electrical kindling is associated with a lasting increase in the extracellular levels of kynurenic acid in the rat hippocampus. Neuroscience Letters, 1995, 198, 91-94.	2.1	16
198	Biochemical and pharmacological evidence of a functional role of AMPA receptors in motor neuron dysfunction inmndmice. European Journal of Neuroscience, 1999, 11, 1705-1710.	2.6	16

#	Article	IF	CITATIONS
199	Safety and Efficacy of Natalizumab as Adjunctive Therapy for People With Drug-Resistant Epilepsy. Neurology, 2021, 97, e1757-e1767.	1.1	15
200	CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiology of Disease, 2021, 158, 105468.	4.4	15
201	A noradrenergic component of quinolinic acid-induced seizures. Experimental Neurology, 1985, 90, 254-258.	4.1	14
202	Effect of aspartame on seizures in various models of experimental epilepsy. Toxicology and Applied Pharmacology, 1988, 96, 485-493.	2.8	14
203	Kynurenic acid synthesis by human glioma. Journal of the Neurological Sciences, 1990, 99, 51-57.	0.6	14
204	Neurodegenerative Effects Induced by Chronic Infusion of Quinolinic Acid in Rat Striatum and Hippocampus. European Journal of Neuroscience, 1991, 3, 40-46.	2.6	14
205	Lasting Increase in Serotonin 5â€HT _{1A} but Not 5â€HT ₄ Receptor Subtypes in the Kindled Rat Dentate Gyrus: Dissociation from Local Presynaptic Effects. Journal of Neurochemistry, 1998, 70, 850-857.	3.9	14
206	VEGF as a Target for Neuroprotection. Epilepsy Currents, 2008, 8, 135-137.	0.8	14
207	Basic mechanisms ofÂMCD inÂanimal models. Epileptic Disorders, 2009, 11, 206-214.	1.3	14
208	TLR3 preconditioning induces anti-inflammatory and anti-ictogenic effects in mice mediated by the IRF3/IFN-β axis. Brain, Behavior, and Immunity, 2019, 81, 598-607.	4.1	14
209	Epileptogenic Activity of Two Peptides Derived from Diazepam Binding Inhibitor After Intrahippocampal Injection in Rats. Epilepsia, 1991, 32, 597-603.	5.1	13
210	Immunity Activation in Brain Cells in Epilepsy: Mechanistic Insights and Pathological Consequences. Neuropediatrics, 2013, 44, 330-335.	0.6	13
211	Epigenetic control of epileptogenesis by miR-146a. Oncotarget, 2017, 8, 45040-45041.	1.8	13
212	Autoradiographic Reevaluation of the Binding Properties of 125I-[Leu31,Pro34]Peptide YY and 125I-Peptide YY3-36 to Neuropeptide Y Receptor Subtypes in Rat Forebrain. Journal of Neurochemistry, 2001, 72, 1663-1670.	3.9	12
213	Leukocyte–Endothelial Adhesion Mechanisms in Epilepsy: Cheers and Jeers. Epilepsy Currents, 2009, 9, 118-121.	0.8	11
214	Fetal brain inflammation may prime hyperexcitability and behavioral dysfunction later in life. Annals of Neurology, 2013, 74, 1-3.	5.3	11
215	2014 Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Currents, 2016, 16, 187-191.	0.8	11
216	Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. Journal of Clinical Investigation, 2019, 129, 2166-2166.	8.2	11

#	Article	IF	CITATIONS
217	VEGF and Seizures: Cross-talk between Endothelial and Neuronal Environments. Epilepsy Currents, 2005, 5, 72-74.	0.8	10
218	Changes of dimension of EEG/ECoG nonlinear dynamics predict epileptogenesis and therapy outcomes. Neurobiology of Disease, 2019, 124, 373-378.	4.4	10
219	Brain Inflammation and Seizures. Epilepsy Currents, 2004, 4, 73-75.	0.8	9
220	Novel Concepts in Epileptogenesis and its Prevention. Neurotherapeutics, 2014, 11, 229-230.	4.4	9
221	Changes in the ADP-ribosylation status of some hippocampal proteins are linked to kindling progression. NeuroReport, 1994, 5, 1217-1220.	1.2	7
222	Time―and Regionâ€5pecific Variations in Somatostatin Release Following Amygdala Kindling in the Rat. Journal of Neurochemistry, 1998, 70, 252-259.	3.9	7
223	Neurology—the next 10 years. Nature Reviews Neurology, 2015, 11, 658-664.	10.1	7
224	ATP as a marker of excitotoxin-induced nerve cell death in vivo. Journal of Neural Transmission, 1987, 70, 349-356.	2.8	6
225	Regional Production of Nitric Oxide after a Peripheral or Central Low Dose of LPS in Mice. NeuroImmunoModulation, 1996, 3, 364-370.	1.8	6
226	Epileptogenic Role of Astrocyte Dysfunction. Epilepsy Currents, 2008, 8, 46-47.	0.8	6
227	Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 10555.	4.1	6
228	Lipid mediator nâ€3 docosapentaenoic acidâ€derived protectin D1 enhances synaptic inhibition of hippocampal principal neurons by interaction with a Gâ€proteinâ€coupled receptor. FASEB Journal, 2022, 36, e22203.	0.5	6
229	Changes in pre- and postsynaptic components of noradrenergic transmission in hippocampal kindling in rats. Brain Research, 1991, 557, 210-216.	2.2	5
230	Introduction to the 2nd Meeting on Immunity and Inflammation in Epilepsy (<scp>IIE</scp> 2016). Epilepsia, 2017, 58, 7-10.	5.1	5
231	Brain Inflammation and Epilepsy. , 2010, , 45-59.		5
232	Adaptive changes in the NMDA receptor complex in rat hippocampus after chronic treatment with CGP 39551. European Journal of Pharmacology, 1994, 271, 93-101.	3.5	4
233	Glia-neuron interactions in epilepsy: Inflammatory mediators. Epilepsia, 2010, 51, 55-55.	5.1	4
234	Brain Autonomous Mechanisms of Seizure-Induced BBB Dysfunction. Epilepsy Currents, 2012, 12, 69-71.	0.8	4

#	Article	IF	CITATIONS
235	Development of In Vivo Imaging Tools for Investigating Astrocyte Activation in Epileptogenesis. Molecular Neurobiology, 2018, 55, 4463-4472.	4.0	4
236	Chromosome 14 deletions, rings, and epilepsy genes: A riddle wrapped in a mystery inside an enigma. Epilepsia, 2021, 62, 25-40.	5.1	4
237	Inflammation and Immunomodulation in Epilepsy and Its Comorbidities. , 2015, , 155-174.		4
238	Tissue Plasminogen Activator, Neuroserpin, and Seizures. Epilepsy Currents, 2005, 5, 130-132.	0.8	3
239	The Toll Receptor Family: From Microbial Recognition to Seizures. Epilepsy Currents, 2006, 6, 11-13.	0.8	3
240	Editorial: Experimental Models of Epilepsy and Related Comorbidities. Frontiers in Pharmacology, 2019, 10, 179.	3.5	3
241	A team science approach to discover novel targets for infantile spasms (IS). Epilepsia Open, 2021, 6, 49-61.	2.4	3
242	Functional activation of somatostatin and neuropeptide Y containing neurons in experimental models of limbic seizures. Epilepsy Research Supplement, 1996, 12, 187-95.	0.0	3
243	Somatostatin-and Neuropeptide Y-Mediated Neurotransmission in Kindling Epileptogenesis. Advances in Behavioral Biology, 1998, , 313-325.	0.2	2
244	Gene therapy of focal-onset epilepsy by adeno-associated virus vector-mediated overexpression of neuropeptide Y. Epilepsia, 2010, 51, 96-96.	5.1	1
245	General conclusions. Epilepsia, 2011, 52, 52-53.	5.1	1
246	WONOEP XI: Workshop summary by the Scientific Organizing Committee. Epilepsia, 2012, 53, 1275-1276.	5.1	1
247	Febrile Response and Seizures. , 2019, , 403-411.		1
248	Emerging Molecular Mechanisms of Neuroinflammation in Seizure Disorders. Agents and Actions Supplements, 2021, , 21-43.	0.2	1
249	Gene Therapy for Epilepsy. , 2006, , 151-163.		1
250	A mathematical model of neuroimmune interactions in epileptogenesis for discovering treatment strategies. IScience, 2022, 25, 104343.	4.1	1
251	Neuropeptide Y and Y1 Receptors in Kindling Epileptogenesis. Epilepsy Currents, 2004, 4, 100-102.	0.8	0

Neuropeptide Y and Its Receptors in Kindling Epileptogenesis. , 2005, , 249-261.

0

#	Article	IF	CITATIONS
253	On Demand Up-regulation of Therapeutic Genes in the Brain: Fiction or Reality?. Epilepsy Currents, 2007, 7, 88-90.	0.8	0
254	The role of reflex control of immunity in the anticonvulsive effects of vagus nerve stimulation. Journal of Neuroimmunology, 2014, 275, 149-150.	2.3	0
255	Ictogenic and Epileptogenic Mechanisms of Neuroinflammation. , 2018, , 23-31.		Ο
256	Characterisation of an infantile rat model of de novo status epilepticus: long-term outcomes. Epilepsy and Behavior, 2019, 101, 106744.	1.7	0
257	Seizure Propensity and Brain Development: A Lesson from Animal Models. , 2009, , 77-104.		Ο
258	Agonists and Antagonists at Neuropeptide (i.e., Somatostatin and Neuropeptide Y) Receptors in the CNS [1,2]. Expert Opinion on Therapeutic Targets, 1997, 1, 101-103.	1.0	0