Andy M C Lau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455034/publications.pdf

Version: 2024-02-01

623734 713466 21 662 14 21 citations g-index h-index papers 25 25 25 874 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of diverse lipidâ€binding modes in the groove of zinc α ₂ glycoprotein reveals its functional versatility. FEBS Journal, 2022, 289, 1876-1896.	4.7	3
2	Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	26
3	Deuteros 2.0: peptide-level significance testing of data from hydrogen deuterium exchange mass spectrometry. Bioinformatics, 2021, 37, 270-272.	4.1	63
4	Integrative Mass Spectrometry–Based Approaches for Modeling Macromolecular Assemblies. Methods in Molecular Biology, 2021, 2247, 221-241.	0.9	5
5	Moderated Test Statistics to Detect Differential Deuteration in Hydrogen/Deuterium Exchange Mass Spectrometry Experiments. Analytical Chemistry, 2021, , .	6.5	2
6	Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Nature Communications, 2020, 11, 5250.	12.8	22
7	Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nature Communications, 2020, 11, 6162.	12.8	35
8	Perturbed structural dynamics underlie inhibition and altered efflux of the multidrugÂresistance pump AcrB. Nature Communications, 2020, 11, 5565.	12.8	34
9	Structural predictions of the functions of membrane proteins from HDX-MS. Biochemical Society Transactions, 2020, 48, 971-979.	3.4	7
10	Structural basis of Cullin 2 RING E3 ligase regulation by the COP9 signalosome. Nature Communications, 2019, 10, 3814.	12.8	40
11	Integrating hydrogen–deuterium exchange mass spectrometry with molecular dynamics simulations to probe lipid-modulated conformational changes in membrane proteins. Nature Protocols, 2019, 14, 3183-3204.	12.0	39
12	Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics, 2019, 35, 3171-3173.	4.1	60
13	Crystal structure of zinc-α2-glycoprotein in complex with a fatty acid reveals multiple different modes of protein-lipid binding. Biochemical Journal, 2019, 476, 2815-2834.	3.7	2
14	A Massâ€Spectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie, 2018, 130, 17440-17445.	2.0	5
15	A Mass‧pectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie - International Edition, 2018, 57, 17194-17199.	13.8	39
16	Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nature Communications, 2018, 9, 4151.	12.8	112
17	Analyzing Protein Architectures and Protein-Ligand Complexes by Integrative Structural Mass Spectrometry. Journal of Visualized Experiments, 2018, , .	0.3	3
18	Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chemical Biology, 2018, 25, 840-848.e4.	5.2	64

ANDY M C LAU

#	Article	IF	CITATIONS
19	Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling. Analytical Chemistry, 2017, 89, 1459-1468.	6.5	46
20	Mechanistic insight into the assembly of the HerA–NurA helicase–nuclease DNA end resection complex. Nucleic Acids Research, 2017, 45, 12025-12038.	14.5	23
21	Zinc-induced oligomerization of zinc $\hat{l}\pm 2$ glycoprotein reveals multiple fatty acid-binding sites. Biochemical Journal, 2016, 473, 43-54.	3.7	19