
Peter M Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454884/publications.pdf Version: 2024-02-01

DETED M TAVIOD

#	Article	IF	CITATIONS
1	Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunology, 2013, 14, 500-508.	14.5	732
2	Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochemical Journal, 2003, 373, 1-18.	3.7	308
3	Role of amino acid transporters in amino acid sensing. American Journal of Clinical Nutrition, 2014, 99, 223S-230S.	4.7	189
4	Antigen receptor control of methionine metabolism in T cells. ELife, 2019, 8, .	6.0	132
5	Single cell analysis of kynurenine and System L amino acid transport in T cells. Nature Communications, 2018, 9, 1981.	12.8	128
6	Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta. Biochemical Journal, 2001, 356, 719-725.	3.7	97
7	The Catalytic Subunit of the System L1 Amino Acid Transporter (Slc7a5) Facilitates Nutrient Signalling in Mouse Skeletal Muscle. PLoS ONE, 2014, 9, e89547.	2.5	83
8	Subcellular localization and adaptive up-regulation of the System A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes. Biochemical Journal, 2001, 355, 563-568.	3.7	78
9	Signaling elements involved in amino acid transport responses to altered muscle cell volume. FASEB Journal, 1997, 11, 1111-1117.	0.5	72
10	Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in <i>Xenopus</i> oocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E822-E829.	3.5	66
11	Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta. Biochemical Journal, 2001, 356, 719.	3.7	63
12	GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochemical Journal, 2015, 470, 207-221.	3.7	55
13	Glutamine Metabolism and Transport in Skeletal Muscle and Heart and Their Clinical Relevance. Journal of Nutrition, 1996, 126, 1142S-1149S.	2.9	54
14	Glutamine Transport and Its Metabolic Effects. Journal of Nutrition, 1994, 124, 1503S-1508S.	2.9	49
15	Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1. Cellular Signalling, 2016, 28, 412-424.	3.6	46
16	Tissue uptake of thyroid hormone by amino acid transporters. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 237-251.	4.7	41
17	Amino acid transporters: <i>éminences grises</i> of nutrient signalling mechanisms?. Biochemical Society Transactions, 2009, 37, 237-241.	3.4	40
18	Michael John Rennie, MSc, PhD, FRSE, FHEA, 1946–2017: an appreciation of his work on protein metabolism in human muscle. American Journal of Clinical Nutrition, 2017, 106, 1-9.	4.7	39

Peter M Taylor

#	Article	IF	CITATIONS
19	Sodiumâ€dependent glutamate transport in cultured rat myotubes increases after glutamine deprivation. FASEB Journal, 1994, 8, 127-131.	0.5	37
20	Proteasomal Modulation of Cellular SNAT2 (SLC38A2) Abundance and Function by Unsaturated Fatty Acid Availability. Journal of Biological Chemistry, 2015, 290, 8173-8184.	3.4	35
21	Involvement of integrins and the cytoskeleton in modulation of skeletal muscle glycogen synthesis by changes in cell volume. FEBS Letters, 1997, 417, 101-103.	2.8	27
22	Integrin and cytoskeletal involvement in signalling cell volume changes to glutamine transport in rat skeletal muscle. Journal of Physiology, 1998, 512, 481-485.	2.9	27
23	Wnt regulates amino acid transporter <i>Slc7a5</i> and so constrains the integrated stress response in mouse embryos. EMBO Reports, 2020, 21, e48469.	4.5	26
24	Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected <i>Xenopus</i> oocytes. Biochemical Journal, 1996, 318, 915-922.	3.7	24
25	Effects of Sodium and Amino Acid Substrate Availability upon the Expression and Stability of the SNAT2 (SLC38A2) Amino Acid Transporter. Frontiers in Pharmacology, 2018, 9, 63.	3.5	24
26	The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Science Signaling, 2019, 12, .	3.6	23
27	Na+/amino acid coupling stoichiometry of rheogenic system B0,+ transport in Xenopus oocytes is variable. Pflugers Archiv European Journal of Physiology, 1994, 426, 121-128.	2.8	19
28	Absorbing competition for carnitine. Journal of Physiology, 2001, 532, 283-283.	2.9	18
29	Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Biochemical Journal, 1999, 343, 169-176.	3.7	17
30	Effect of hypothyroidism on pathways for iodothyronine and tryptophan uptake into rat adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E254-E259.	3.5	12
31	Transport of amino acids in muscle, gut and liver: relevance to metabolic control. Biochemical Society Transactions, 1990, 18, 1140-1142.	3.4	11
32	Cysteine residues in the C-terminus of the neutral- and basic-amino-acid transporter heavy-chain subunit contribute to functional properties of the system b0,+-type amino acid transporter. Biochemical Journal, 2000, 351, 677-682.	3.7	9
33	CDK7 is a component of the integrated stress response regulating SNAT2 (SLC38A2)/System A adaptation in response to cellular amino acid deprivation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 978-991.	4.1	6
34	Altered glycogen synthesis associated with changes in cell volume of rat skeletal muscle myotubes in primary culture. Biochemical Society Transactions, 1996, 24, 244S-244S.	3.4	2