Laura Poliseno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745364/publications.pdf

Version: 2024-02-01

2
lex
057
uthors

#	Article	IF	CITATIONS
1	A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?. Cell, 2011, 146, 353-358.	28.9	5,954
2	A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465, 1033-1038.	27.8	2,133
3	Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs. Cell, 2011, 147, 344-357.	28.9	926
4	MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 2006, 108, 3068-3071.	1.4	693
5	MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling. Cell, 2013, 154, 311-324.	28.9	417
6	Identification of the <i>miR-106b</i> ~ <i>25</i> MicroRNA Cluster as a Proto-Oncogenic <i>PTEN</i> -Targeting Intron That Cooperates with Its Host Gene <i>MCM7</i> in Transformation. Science Signaling, 2010, 3, ra29.	3.6	390
7	microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO Journal, 2011, 30, 1990-2007.	7.8	228
8	Pseudogenes: Newly Discovered Players in Human Cancer. Science Signaling, 2012, 5, re5.	3.6	125
9	PTEN ceRNA networks in human cancer. Methods, 2015, 77-78, 41-50.	3.8	121
10	Deletion of PTENP1 Pseudogene in Human Melanoma. Journal of Investigative Dermatology, 2011, 131, 2497-2500.	0.7	99
11	LRF Is an Essential Downstream Target of GATA1 in Erythroid Development and Regulates BIM-Dependent Apoptosis. Developmental Cell, 2009, 17, 527-540.	7.0	97
12	Pseudogenes in Human Cancer. Frontiers in Medicine, 2015, 2, 68.	2.6	92
13	Long non-coding RNAs in cancer: implications for personalized therapy. Cellular Oncology (Dordrecht), 2015, 38, 17-28.	4.4	92
14	The Proto-Oncogene LRF Is under Post-Transcriptional Control of MiR-20a: Implications for Senescence. PLoS ONE, 2008, 3, e2542.	2.5	79
15	Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 2017, 8, 25395-25417.	1.8	64
16	The Novel Gamma Secretase Inhibitor RO4929097 Reduces the Tumor Initiating Potential of Melanoma. PLoS ONE, 2011, 6, e25264.	2.5	60
17	Integrative Genomics Identifies Molecular Alterations that Challenge the Linear Model of Melanoma Progression. Cancer Research, 2011, 71, 2561-2571.	0.9	57
18	Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature. ACS Applied Bio Materials, 2019, 2, 4464-4470.	4.6	49

#	Article	IF	Citations
19	Histology-Specific MicroRNA Alterations in Melanoma. Journal of Investigative Dermatology, 2012, 132, 1860-1868.	0.7	46
20	Hedgehog Pathway Blockade Inhibits Melanoma Cell Growth in Vitro and in Vivo. Pharmaceuticals, 2013, 6, 1429-1450.	3.8	40
21	miRNAs Regulate miRNAs: Coordinated Transcriptional and Post-Transcriptional Regulation. Cell Cycle, 2006, 5, 2473-2476.	2.6	33
22	Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma. Oncogene, 2019, 38, 3756-3762.	5.9	30
23	Suppression of <i>CHK1</i> by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis. Cancer Discovery, 2015, 5, 550-563.	9.4	24
24	The landscape of BRAF transcript and protein variants in human cancer. Molecular Cancer, 2017, 16, 85.	19.2	22
25	The Energy Profiling of Short Interfering RNAs Is Highly Predictive of Their Activity. Oligonucleotides, 2004, 14, 227-232.	2.7	16
26	Resting smooth muscle cells as a model for studying vascular cell activation. Tissue and Cell, 2006, 38, 111-120.	2.2	16
27	Biological role of miR-204 and miR-211 in melanoma. Oncoscience, 2018, 5, 248-251.	2.2	15
28	Bcl2-negative MCF7 cells overexpress p53: implications for the cell cycle and sensitivity to cytotoxic drugs. Cancer Chemotherapy and Pharmacology, 2002, 50, 127-130.	2.3	14
29	MICAL2 is expressed in cancer associated neo-angiogenic capillary endothelia and it is required for endothelial cell viability, motility and VEGF response. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2111-2124.	3.8	14
30	PTENP1 is a ceRNA for PTEN: it's CRISPR clear. Journal of Hematology and Oncology, 2020, 13, 73.	17.0	13
31	Identification of BRAF 3′UTR Isoforms in Melanoma. Journal of Investigative Dermatology, 2015, 135, 1694-1697.	0.7	12
32	Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of <i>BRAF</i> -X1 mRNA. RNA Biology, 2019, 16, 865-878.	3.1	10
33	Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment. Biochemical Journal, 2004, 379, 823-832.	3.7	9
34	Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene, 2019, 38, 1355-1366.	5.9	8
35	A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports, 2021, 16, 1496-1509.	4.8	8
36	RNA-Based Drugs: From RNA Interference to Short Interfering RNAs. Current Pharmaceutical Biotechnology, 2004, 5, 361-368.	1.6	8

#	Article	IF	CITATIONS
37	Proteomics pipeline for phosphoenrichment and its application on a human melanoma cell model. Talanta, 2020, 220, 121381.	5.5	7
38	Pseudogenes. Methods in Molecular Biology, 2014, 1167, v.	0.9	5
39	Early modifications of circulating microRNAs levels in metastatic colorectal cancer patients treated with regorafenib. Pharmacogenomics Journal, 2019, 19, 455-464.	2.0	5
40	The Sensitivity of MCF10A Breast Epithelial Cells to Alkylating Drugs is Enhanced by the Inhibition of O6-Methylguanine-DNA Methyltransferase Transcription with a Synthetic Double Strand DNA Oligonucleotide. Breast Cancer Research and Treatment, 2002, 73, 207-213.	2.5	3
41	Pro64His (rs4644) Polymorphism Within Galectin-3 Is a Risk Factor of Differentiated Thyroid Carcinoma and Affects the Transcriptome of Thyrocytes Engineered via CRISPR/Cas9 System. Thyroid, 2021, 31, 1056-1066.	4.5	3
42	In Vivo Silencing/Overexpression of lncRNAs by CRISPR/Cas System. Methods in Molecular Biology, 2021, 2348, 205-220.	0.9	3
43	Methods for the Identification of PTEN-Targeting MicroRNAs. Methods in Molecular Biology, 2016, 1388, 111-138.	0.9	3
44	Inducible modulation of miR-204 levels in a zebrafish melanoma model. Biology Open, 2020, 9, .	1.2	3
45	Ensemble Modeling Approach Targeting Heterogeneous RNA-Seq data: Application to Melanoma Pseudogenes. Scientific Reports, 2017, 7, 17344.	3.3	2
46	Distinguishing between nodular and superficial spreading melanoma using specific microRNA alterations Journal of Clinical Oncology, 2011, 29, 8540-8540.	1.6	2
47	Identification of active siRNAs against IGF-IR of porcine coronary smooth muscle cells in a heterologous cell line. International Journal of Molecular Medicine, 2005, 15, 713.	4.0	1
48	Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses. Genetics & Epigenetics, 2015, 7, GEG.S27696.	2.5	1
49	P-198 Circulating microRNAs in metastatic colorectal cancer (mCRC) patients (pts) treated with regorafenib. Annals of Oncology, 2015, 26, iv57.	1.2	1
50	Analysis of Lymph Node Volume by Ultra-High-Frequency Ultrasound Imaging in the Braf/Pten Genetically Engineered Mouse Model of Melanoma. Journal of Visualized Experiments, 2021, , .	0.3	1
51	Circulating microRNAs in metastatic colorectal cancer (mCRC) patients (pts) treated with regorafenib. Annals of Oncology, 2015, 26, vi37.	1.2	0
52	476 GJB5 association with BRAF mutation and survival in cutaneous melanoma. Journal of Investigative Dermatology, 2019, 139, S296.	0.7	0
53	High-Throughput Identification of miRNA–Target Interactions in Melanoma Using miR-CATCHv2.0. Methods in Molecular Biology, 2021, 2265, 487-512.	0.9	0
54	CRISPR/Cas Technologies Applied to Pseudogenes. Methods in Molecular Biology, 2021, 2324, 265-284.	0.9	0

#	Article	IF	CITATIONS
55	The use of integrative genomics to define molecular signatures of melanoma histologic subtypes Journal of Clinical Oncology, 2010, 28, 8553-8553.	1.6	0
56	Preclinical analyses of a new gamma-secretase inhibitor targeting notch signaling in melanoma Journal of Clinical Oncology, 2010, 28, 8546-8546.	1.6	0
57	Abstract 425: Targeting embryonic signaling pathways in melanoma. , 2012, , .		O
58	Abstract LB-282: Two different strategies of delivery CRISPR/Cas9 system to gene edit rs4644 SNP in LGALS3 gene. , 2017, , .		0