
Takashi Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452782/publications.pdf Version: 2024-02-01

TAKASHI ARE

#	Article	IF	CITATIONS
1	Comparisons of calorie restriction and structured exercise on reductions in visceral and abdominal subcutaneous adipose tissue: a systematic review. European Journal of Clinical Nutrition, 2022, 76, 184-195.	2.9	14
2	Blood flow restriction training on resting blood pressure and heart rate: a meta-analysis of the available literature. Journal of Human Hypertension, 2022, 36, 738-743.	2.2	7
3	Blood Flow Restricted Exercise and Discomfort: A Review. Journal of Strength and Conditioning Research, 2022, 36, 871-879.	2.1	39
4	The Effect of Blood Flow Restriction Therapy on Recovery After Experimentally Induced Muscle Weakness and Pain. Journal of Strength and Conditioning Research, 2022, 36, 1147-1152.	2.1	3
5	Hypoalgesia following isometric handgrip exercise with and without blood flow restriction is not mediated by discomfort nor changes in systolic blood pressure. Journal of Sports Sciences, 2022, 40, 518-526.	2.0	6
6	A longitudinal study of handgrip strength asymmetry. American Journal of Human Biology, 2022, 34, e23722.	1.6	4
7	The impact of isometric handgrip exercise and training on healthâ€related factors: A review. Clinical Physiology and Functional Imaging, 2022, 42, 57-87.	1.2	5
8	Muscle thickness assessment of the forearm via ultrasonography: is experience level important?. Biomedical Physics and Engineering Express, 2022, 8, 027003.	1.2	3
9	Blood flow restriction maintains blood pressure upon head-up tilt. Physiology International, 2022, 109, 106-118.	1.6	0
10	Comparison of handgrip strength values in young children when using two different types of dynamometers. American Journal of Human Biology, 2022, 34, .	1.6	4
11	Is the peak value truly maximal when measuring strength in young children? An updated study. Journal of Trainology, 2022, 11, 17-21.	0.5	3
12	The Relationship Between Muscle Size and Strength Does not Depend on Echo Intensity in Healthy Young Adults. Journal of Clinical Densitometry, 2021, 24, 406-413.	1.2	7
13	Blood Flow Restriction Exercise: Effects of Sex, Cuff Width, and Cuff Pressure on Perceived Lower Body Discomfort. Perceptual and Motor Skills, 2021, 128, 353-374.	1.3	12
14	Skeletal muscle size distribution in largeâ€sized male and female athletes. American Journal of Human Biology, 2021, 33, e23473.	1.6	7
15	The mysterious values of adipose tissue density and fat content in infants: MRI-measured body composition studies. Pediatric Research, 2021, 90, 963-965.	2.3	8
16	How does adipose tissue fat content change after a weight loss intervention?. Journal of Trainology, 2021, 10, 2-4.	0.5	0
17	Can Lip Strength Be Used as a Surrogate Measure of Handgrip Strength? A Pilot Test. Journal of the American Medical Directors Association, 2021, 22, 878-880.	2.5	2
18	The effects of exergames on muscle strength: A systematic review and metaâ€analysis. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 1592-1611.	2.9	22

#	Article	IF	CITATIONS
19	Orbicularis Oculi Muscle Size and Function: Exploring the Influence of Aging and Exercise Training. Cosmetics, 2021, 8, 29.	3.3	0
20	Subcutaneous adipose tissue distribution and serum lipid/lipoprotein in unmedicated postmenopausal women: A B-mode ultrasound study. Imaging, 2021, , .	0.3	1
21	Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Medical Hypotheses, 2021, 151, 110586.	1.5	6
22	Exercise-induced hypoalgesia and pain reduction following blood flow restriction: A brief review. Physical Therapy in Sport, 2021, 50, 89-96.	1.9	24
23	The Fat Fraction Percentage of White Adipose Tissue at various Ages in Humans: An Updated Review. Journal of Clinical Densitometry, 2021, 24, 369-373.	1.2	0
24	Blocking the activin <scp>IIB</scp> receptor with bimagrumab (<scp>BYM338</scp>) increases walking performance: A metaâ€analysis. Geriatrics and Gerontology International, 2021, 21, 939-943.	1.5	3
25	Effects of isometric handgrip exercise with or without blood flow restriction on interference control and feelings. Clinical Physiology and Functional Imaging, 2021, 41, 480-487.	1.2	3
26	The Measurement of Strength in Children: Is the Peak Value Truly Maximal?. Children, 2021, 8, 9.	1.5	13
27	IMPACT OF FAT-FREE ADIPOSE TISSUE ON THE PREVALENCE OF LOW MUSCLE MASS ESTIMATED USING CALF CIRCUMFERENCE IN MIDDLE-AGED AND OLDER ADULTS. Journal of Frailty & amp; Aging, the, 2020, 9, 1-4.	1.3	1
28	The Water-Fat Separation Method for Determining the Fat-free Component of Subcutaneous Adipose Tissue in Humans: A Brief Review. Journal of Clinical Densitometry, 2020, 23, 390-394.	1.2	9
29	The Impact of Ultrasound Probe Tilt on Muscle Thickness and Echo-Intensity: A Cross-Sectional Study. Journal of Clinical Densitometry, 2020, 23, 630-638.	1.2	36
30	Impact of Acute Fluid Retention on Ultrasound Echo Intensity. Journal of Clinical Densitometry, 2020, 23, 149-150.	1.2	7
31	Longitudinal associations between changes in body composition and changes in sprint performance in elite female sprinters. European Journal of Sport Science, 2020, 20, 100-105.	2.7	17
32	Assessing differential responders and mean changes in muscle size, strength, and the crossover effect to 2 distinct resistance training protocols. Applied Physiology, Nutrition and Metabolism, 2020, 45, 463-470.	1.9	32
33	The contraction history of the muscle and strength change: lessons learned from unilateral training models. Physiological Measurement, 2020, 41, 01TR01.	2.1	7
34	Blood flow restriction does not augment low force contractions taken to or near task failure. European Journal of Sport Science, 2020, 20, 650-659.	2.7	16
35	Exercise induced changes in echo intensity within the muscle: a brief review. Journal of Ultrasound, 2020, 23, 457-472.	1.3	41
36	The position of the cuff bladder has a large impact on the pressure needed for blood flow restriction. Physiological Measurement, 2020, 41, 01NT01.	2.1	16

#	Article	IF	CITATIONS
37	Impact of Gastric Bypass Surgery on Fat-Free Mass and Fat Mass Ratio of Adipose Tissue: A Brief Review. Bariatric Surgical Patient Care, 2020, 15, 11-14.	0.5	2
38	Skeletal muscle mass in female athletes: The average and the extremes. American Journal of Human Biology, 2020, 32, e23333.	1.6	10
39	The Basics of Training for Muscle Size and Strength: A Brief Review on the Theory. Medicine and Science in Sports and Exercise, 2020, 52, 645-653.	0.4	18
40	To Play or Not to Play: Can an Instrument Really Impact Lip and Tongue Performance?. Cosmetics, 2020, 7, 50.	3.3	1
41	Response. Medicine and Science in Sports and Exercise, 2020, 52, 2051-2052.	0.4	1
42	Response: Commentary: Can Blood Flow Restricted Exercise Cause Muscle Damage? Commentary on Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Frontiers in Physiology, 2020, 11, 574633.	2.8	7
43	Postactivation performance enhancement: Does conditioning one arm augment performance in the other?. Clinical Physiology and Functional Imaging, 2020, 40, 407-414.	1.2	10
44	Stepwise Load Reduction Training: A New Training Concept for Skeletal Muscle and Energy Systems. Sports Medicine, 2020, 50, 2075-2081.	6.5	8
45	Special Issue "Exercise-Induced Facial Rejuvenation and Orofacial Strength and Function― Cosmetics, 2020, 7, 97.	3.3	0
46	Does resistance training increase aponeurosis width? The current results and future tasks. European Journal of Applied Physiology, 2020, 120, 1489-1494.	2.5	4
47	A Practical Method for Assessing Lip Compression Strengthening in Healthy Adults. Cosmetics, 2020, 7, 5.	3.3	3
48	Influence of sex and resistance training status on orofacial muscle strength and morphology in healthy adults between the ages of 18 and 40: A crossâ€sectional study. American Journal of Human Biology, 2020, 32, e23401.	1.6	11
49	Why is low body fat rarely seen in largeâ€sized male athletes?. American Journal of Human Biology, 2020, 32, e23399.	1.6	3
50	Muscle swelling following blood flowâ€restricted exercise does not differ between cuff widths in the proximal or distal portions of the upper leg. Clinical Physiology and Functional Imaging, 2020, 40, 269-276.	1.2	3
51	Effects of Age, Sex, Disease, and Exercise Training on Lip Muscle Strength. Cosmetics, 2020, 7, 18.	3.3	5
52	Conditioning participants to a relative pressure: implications for practical blood flow restriction. Physiological Measurement, 2020, 41, 08NT01.	2.1	3
53	Strength testing or strength training: considerations for future research. Physiological Measurement, 2020, 41, 09TR01.	2.1	13
54	The Perceived Tightness Scale Does Not Provide Reliable Estimates of Blood Flow Restriction Pressure. Journal of Sport Rehabilitation, 2020, 29, 516-518.	1.0	20

#	Article	IF	CITATIONS
55	Limb Occlusion Pressure: A Method to Assess Changes in Systolic Blood Pressure. International Journal of Exercise Science, 2020, 13, 366-373.	0.5	1
56	The influence of training variables on lingual strength and swallowing in adults with and without dysphagia. JCSM Clinical Reports, 2020, 5, 29-41.	1.3	5
57	A method to standardize the blood flow restriction pressure by an elastic cuff. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 329-335.	2.9	20
58	The impact of DXA-derived fat-free adipose tissue on the prevalence of low muscle mass in older adults. European Journal of Clinical Nutrition, 2019, 73, 757-762.	2.9	6
59	Differences in 100-m sprint performance and skeletal muscle mass between elite male and female sprinters. Journal of Sports Medicine and Physical Fitness, 2019, 59, 304-309.	0.7	12
60	Perceptual and arterial occlusion responses to very low load blood flow restricted exercise performed to volitional failure. Clinical Physiology and Functional Imaging, 2019, 39, 29-34.	1.2	22
61	Very-low-load resistance exercise in the upper body with and without blood flow restriction: cardiovascular outcomes. Applied Physiology, Nutrition and Metabolism, 2019, 44, 288-292.	1.9	15
62	The Influence of Facial Muscle Training on the Facial Soft Tissue Profile: A Brief Review. Cosmetics, 2019, 6, 50.	3.3	10
63	Body Fat Loss Automatically Reduces Lean Mass by Changing the Fatâ€Free Component of Adipose Tissue. Obesity, 2019, 27, 357-358.	3.0	22
64	Response to "Relationships Between Fat Mass and Lean Mass― Obesity, 2019, 27, 874-874.	3.0	0
65	Exercise-Induced Changes in Muscle Size do not Contribute to Exercise-Induced Changes in Muscle Strength. Sports Medicine, 2019, 49, 987-991.	6.5	47
66	Ultrasound and MRI measured changes in muscle mass gives different estimates but similar conclusions: a Bayesian approach. European Journal of Clinical Nutrition, 2019, 73, 1203-1205.	2.9	21
67	Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Frontiers in Physiology, 2019, 10, 533.	2.8	332
68	High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training. Physiological Measurement, 2019, 40, 035003.	2.1	29
69	AN ULTRASOUND PREDICTION EQUATION TO ESTIMATE DXA-DERIVED BODY FATNESS FOR MIDDLE-AGED AND OLDER CAUCASIAN ADULTS. Journal of Frailty & amp; Aging, the, 2019, 8, 1-6.	1.3	3
70	Perceptual changes to progressive resistance training with and without blood flow restriction. Journal of Sports Sciences, 2019, 37, 1857-1864.	2.0	29
71	The impact of cuff width and biological sex on cuff preference and the perceived discomfort to blood-flow-restricted arm exercise. Physiological Measurement, 2019, 40, 055001.	2.1	19
72	The influence of biological sex and cuff width on muscle swelling, echo intensity, and the fatigue response to blood flow restricted exercise. Journal of Sports Sciences, 2019, 37, 1865-1873.	2.0	19

#	Article	IF	CITATIONS
73	A Meta-analysis to Determine the Validity of Taking Blood Pressure Using the Indirect Cuff Method. Current Hypertension Reports, 2019, 21, 11.	3.5	11
74	Is muscle growth a mechanism for increasing strength?. Medical Hypotheses, 2019, 125, 51-56.	1.5	25
75	Assessments of Facial Muscle Thickness by Ultrasound in Younger Adults: Absolute and Relative Reliability. Cosmetics, 2019, 6, 65.	3.3	7
76	The Association of Handgrip Strength and Mortality: What Does It Tell Us and What Can We Do With It?. Rejuvenation Research, 2019, 22, 230-234.	1.8	32
77	Fat-Free Adipose Tissue Mass: Impact on Peak Oxygen Uptake (VO2peak) in Adolescents with and without Obesity. Sports Medicine, 2019, 49, 9-15.	6.5	11
78	Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis. European Journal of Applied Physiology, 2019, 119, 265-278.	2.5	28
79	Body fat percentage assessment by ultrasound subcutaneous fat thickness measurements in middle-aged and older adults. Clinical Nutrition, 2019, 38, 2659-2667.	5.0	14
80	Acute skeletal muscle responses to very lowâ€load resistance exercise with and without the application of blood flow restriction in the upper body. Clinical Physiology and Functional Imaging, 2019, 39, 201-208.	1.2	22
81	Magnetic resonance imaging-measured skeletal muscle mass to fat-free mass ratio increases with increasing levels of fat-free mass. Journal of Sports Medicine and Physical Fitness, 2019, 59, 619-623.	0.7	4
82	The Bigger the Hand, the Bigger the Difference? Implications for Testing Strength With 2 Popular Handgrip Dynamometers. Journal of Sport Rehabilitation, 2019, 28, 278-282.	1.0	13
83	Simple chart for practical screening of low muscle mass in wellâ€functioning middleâ€aged and older men and women. Geriatrics and Gerontology International, 2018, 18, 657-658.	1.5	1
84	The Application of Blood Flow Restriction: Lessons From the Laboratory. Current Sports Medicine Reports, 2018, 17, 129-134.	1.2	61
85	Blood flow restriction: Methods matter. Experimental Gerontology, 2018, 104, 7-8.	2.8	4
86	Effects of load on the acute response of muscles proximal and distal to blood flow restriction. Journal of Physiological Sciences, 2018, 68, 769-779.	2.1	7
87	Resistance exercise and sports performance: The minority report. Medical Hypotheses, 2018, 113, 1-5.	1.5	14
88	Mechanisms of Blood Flow Restriction: The New Testament. Techniques in Orthopaedics, 2018, 33, 72-79.	0.2	68
89	Skeletal muscle mass in human athletes: What is the upper limit?. American Journal of Human Biology, 2018, 30, e23102.	1.6	22
90	Blood flow restriction and cuff width: effect on blood flow in the legs. Clinical Physiology and Functional Imaging, 2018, 38, 944-948.	1.2	19

#	Article	IF	CITATIONS
91	Moderately heavy exercise produces lower cardiovascular, RPE, and discomfort compared to lower load exercise with and without blood flow restriction. European Journal of Applied Physiology, 2018, 118, 1473-1480.	2.5	26
92	Muscle activation and heart rate responses to a sideâ€step interval exercise. Clinical Physiology and Functional Imaging, 2018, 38, 285-290.	1.2	2
93	Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study. Journal of Sports Sciences, 2018, 36, 691-696.	2.0	33
94	The use of ultrasound for the estimation of muscle mass: one site fits most?. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 213-214.	7.3	11
95	Prediction and Validation of DXAâ€Derived Appendicular Fatâ€Free Adipose Tissue by a Single Ultrasound Image of the Forearm in Japanese Older Adults. Journal of Ultrasound in Medicine, 2018, 37, 347-353.	1.7	14
96	Correlations Do Not Show Cause and Effect: Not Even for Changes in Muscle Size and Strength. Sports Medicine, 2018, 48, 1-6.	6.5	61
97	Relationship between ultrasound muscle thickness and MRIâ€measured muscle crossâ€sectional area in the forearm: a pilot study. Clinical Physiology and Functional Imaging, 2018, 38, 652-655.	1.2	11
98	Acute hemodynamic changes following high load and very low load lower body resistance exercise with and without the restriction of blood flow. Physiological Measurement, 2018, 39, 125007.	2.1	5
99	Muscle Adaptations to High-Load Training and Very Low-Load Training With and Without Blood Flow Restriction. Frontiers in Physiology, 2018, 9, 1448.	2.8	94
100	Arterial occlusion pressure as a method to quantify cardiovascular responses to exercise. Biomedical Physics and Engineering Express, 2018, 4, 065034.	1.2	1
101	What is the Impact of Muscle Hypertrophy on Strength and Sport Performance?. Strength and Conditioning Journal, 2018, 40, 99-111.	1.4	19
102	An investigation into setting the blood flow restriction pressure based on perception of tightness. Physiological Measurement, 2018, 39, 105006.	2.1	12
103	DXA-Derived Lean Mass Includes the Fat-Free Component of Adipose Tissue: Impact on Training-Induced Changes in Body Composition. Journal of Clinical Densitometry, 2018, 21, 595-596.	1.2	4
104	Author's response. Assessing forearm muscle size with the ultrasound. Clinical Physiology and Functional Imaging, 2018, 38, 1069-1070.	1.2	3
105	DXA-Rectified Appendicular Lean Mass: Development of Ultrasound Prediction Models in Older Adults. Journal of Nutrition, Health and Aging, 2018, 22, 1080-1085.	3.3	12
106	Skeletal Muscle Mass and Architecture of the World's Strongest Raw Powerlifter: A Case Study. Asian Journal of Sports Medicine, 2018, 9, .	0.3	13
107	Appendicular lean mass and site-specific muscle loss in the extremities correlate with dynamic strength. Clinical Physiology and Functional Imaging, 2017, 37, 328-331.	1.2	11
108	Influence of cuff material on blood flow restriction stimulus in the upper body. Journal of Physiological Sciences, 2017, 67, 207-215.	2.1	45

#	Article	IF	CITATIONS
109	Blood flowâ€ r estricted walking in older women: does the acute hormonal response associate with muscle hypertrophy?. Clinical Physiology and Functional Imaging, 2017, 37, 379-383.	1.2	20
110	The influence of exercise load with and without different levels of blood flow restriction on acute changes in muscle thickness and lactate. Clinical Physiology and Functional Imaging, 2017, 37, 734-740.	1.2	52
111	The influence of time on determining blood flow restriction pressure. Journal of Science and Medicine in Sport, 2017, 20, 777-780.	1.3	15
112	Can Handgrip Strength Improve Following Body Mass-Based Lower Body Exercise?. BioResearch Open Access, 2017, 6, 19-27.	2.6	6
113	Walking with blood flow restriction: Could it help the elderly to get more out of every step?. Journal of Science and Medicine in Sport, 2017, 20, 964.	1.3	2
114	Muscle adaptations following 21 consecutive days of strength test familiarization compared with traditional training. Muscle and Nerve, 2017, 56, 307-314.	2.2	73
115	The Influence of Applied Blood Flow Restriction Cuffs on Kinematics of Submaximal Sprinting. Journal of Functional Morphology and Kinesiology, 2017, 2, 45.	2.4	2
116	Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle and Nerve, 2016, 53, 438-445.	2.2	164
117	Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness. Clinical Physiology and Functional Imaging, 2016, 36, 206-210.	1.2	24
118	Blood flow occlusion pressure at rest and immediately after a bout of low load exercise. Clinical Physiology and Functional Imaging, 2016, 36, 436-440.	1.2	29
119	Associations of sit-up ability with sarcopenia classification measures in Japanese older women. Interventional Medicine & Applied Science, 2016, 8, 152-157.	0.2	15
120	Expression of VO2peak in Children and Youth, with Special Reference to Allometric Scaling. Sports Medicine, 2016, 46, 1451-1460.	6.5	69
121	Post-exercise blood flow restriction attenuates muscle hypertrophy. European Journal of Applied Physiology, 2016, 116, 1955-1963.	2.5	26
122	Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults. Journal of Physical Therapy Science, 2016, 28, 14-19.	0.6	20
123	Ultrasound-Derived Forearm Muscle Thickness Is a Powerful Predictor for Estimating DXA-Derived Appendicular Lean Mass in Japanese Older Adults. Ultrasound in Medicine and Biology, 2016, 42, 2341-2344.	1.5	32
124	The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Medicine, 2016, 46, 913-921.	6.5	88
125	Age-related change in handgrip strength in men and women: is muscle quality a contributing factor?. Age, 2016, 38, 28.	3.0	60
126	The Effects of Blood Flow Restriction on Upper-Body Musculature Located Distal and Proximal to Applied Pressure. Sports Medicine, 2016, 46, 23-33.	6.5	70

#	Article	IF	CITATIONS
127	Blood Flow Restricted Training in Older Adults: Consider Standardized Methodology for Future Investigations?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 619-619.	3.6	2
128	Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women. Journal of Physical Therapy Science, 2015, 27, 1893-1897.	0.6	11
129	Handgrip strength dominance is associated with difference in forearm muscle size. Journal of Physical Therapy Science, 2015, 27, 2147-2149.	0.6	22
130	Effects of Electrostimulation with Blood Flow Restriction on Muscle Size and Strength. Medicine and Science in Sports and Exercise, 2015, 47, 2621-2627.	0.4	53
131	Physiological stimuli necessary for muscle hypertrophy. The Journal of Physical Fitness and Sports Medicine, 2015, 4, 43-51.	0.3	14
132	Associations between Handgrip Strength and Ultrasound-Measured Muscle Thickness of the Hand and Forearm in Young Men and Women. Ultrasound in Medicine and Biology, 2015, 41, 2125-2130.	1.5	39
133	Muscle and fat mapping of the trunk: a case study. Journal of Ultrasound, 2015, 18, 399-405.	1.3	2
134	Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults. Age, 2015, 37, 114.	3.0	39
135	The effects of resistance exercise with and without different degrees of blood-flow restriction on perceptual responses. Journal of Sports Sciences, 2015, 33, 1472-1479.	2.0	50
136	The association between muscle strengthening activities and red blood cell distribution width among a national sample of U.S. adults. Preventive Medicine, 2015, 73, 130-132.	3.4	33
137	Influence of adipose tissue mass on DXA-derived lean soft tissue mass in middle-aged and older women. Age, 2015, 37, 9741.	3.0	17
138	Validity of Ultrasound Prediction Equations for Total and Regional Muscularity in Middle-aged and Older Men and Women. Ultrasound in Medicine and Biology, 2015, 41, 557-564.	1.5	51
139	Individual differences in the exerciseâ€mediated blood pressure response: regression to the mean in disguise?. Clinical Physiology and Functional Imaging, 2015, 35, 490-492.	1.2	4
140	Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review. Ultrasound, 2015, 23, 166-173.	0.7	57
141	Muscular adaptations to fatiguing exercise with and without blood flow restriction. Clinical Physiology and Functional Imaging, 2015, 35, 167-176.	1.2	111
142	Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. European Journal of Applied Physiology, 2015, 115, 397-405.	2.5	121
143	Effects of shortâ€ŧerm detraining following blood flow restricted lowâ€intensity training on muscle size and strength. Clinical Physiology and Functional Imaging, 2015, 35, 71-75.	1.2	21
144	Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle and Nerve, 2015, 51, 713-721.	2.2	137

Τακάς η Αβε

#	Article	IF	CITATIONS
145	COPD and muscle loss: is blood flow restriction a potential treatment?. Journal of Trainology, 2014, 3, 1-5.	0.5	8
146	Skeletal Muscle Mass, Bone Mineral Density, and Walking Performance in Masters Cyclists. Rejuvenation Research, 2014, 17, 291-296.	1.8	14
147	Morphological and functional relationships with ultrasound measured muscle thickness of the upper extremity and trunk. Ultrasound, 2014, 22, 229-235.	0.7	25
148	Estimating Site-Specific Muscle Loss: A Valuable Tool for Early Sarcopenia Detection?. Rejuvenation Research, 2014, 17, 496-498.	1.8	29
149	Is muscle strength ratio a criterion for diagnosis of site-specific muscle loss?. Geriatrics and Gerontology International, 2014, 14, 837-844.	1.5	19
150	Skeletal Muscle Mass and Muscular Function in Master Swimmers Is Related to Training Distance. Rejuvenation Research, 2014, 17, 415-421.	1.8	16
151	Age-related site-specific muscle loss in the thigh and zigzag walking performance in older men and women. Acta Physiologica Hungarica, 2014, 101, 488-495.	0.9	11
152	Prevalence of site-specific thigh sarcopenia in Japanese men and women. Age, 2014, 36, 417-426.	3.0	59
153	Site-specific thigh muscle loss as an independent phenomenon for age-related muscle loss in middle-aged and older men and women. Age, 2014, 36, 9634.	3.0	45
154	Vascular adaptations to low-load resistance training with and without blood flow restriction. European Journal of Applied Physiology, 2014, 114, 715-724.	2.5	25
155	Association between siteâ€specific muscle loss of lower body and oneâ€leg standing balance in active women: The <scp>HIREGASAKI</scp> study. Geriatrics and Gerontology International, 2014, 14, 381-387.	1.5	17
156	Home-based resistance training for older adults: A systematic review. Geriatrics and Gerontology International, 2014, 14, 750-757.	1.5	69
157	Association Between Forearm Muscle Thickness and Age-related Loss of Skeletal Muscle Mass, Handgrip and Knee Extension Strength and Walking Performance in Old Men and Women: A Pilot Study. Ultrasound in Medicine and Biology, 2014, 40, 2069-2075.	1.5	36
158	Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age, 2014, 36, 813-821.	3.0	77
159	Interrelationships between body mass to waist circumference ratio, body mass index, and total body muscularity in older women. Journal of Clinical Gerontology and Geriatrics, 2014, 5, 58-60.	0.7	7
160	Age-Ârelated muscle loss of the anterior and posterior thigh assessed by means of MRI/CT and ultrasound. Journal of Trainology, 2014, 3, 47-52.	0.5	4
161	Resistance training induced increase in VO2max in young and older subjects. European Review of Aging and Physical Activity, 2013, 10, 107-116.	2.9	57
162	The effects of elastic band resistance training combined with blood flow restriction on strength, total boneâ€free lean body mass and muscle thickness in postmenopausal women. Clinical Physiology and Functional Imaging, 2013, 33, 344-352.	1.2	76

#	Article	IF	CITATIONS
163	Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. European Journal of Applied Physiology, 2013, 113, 167-174.	2.5	64
164	Effect of cuff type on arterial occlusion. Clinical Physiology and Functional Imaging, 2013, 33, 325-327.	1.2	48
165	Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. European Journal of Applied Physiology, 2013, 113, 975-985.	2.5	71
166	Blood flow restriction pressure recommendations: a tale of two cuffs. Frontiers in Physiology, 2013, 4, 249.	2.8	77
167	Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review. Clinical Interventions in Aging, 2013, 8, 369.	2.9	24
168	Low-Load Bench Press Training to Fatigue Results in Muscle Hypertrophy Similar to High-Load Bench Press Training. International Journal of Clinical Medicine, 2013, 04, 114-121.	0.2	94
169	Relationship between Dual-Energy X-Ray Absorptiometry-Derived Appendicular Lean Tissue Mass and Total Body Skeletal Muscle Mass Estimated by Ultrasound. International Journal of Clinical Medicine, 2013, 04, 283-286.	0.2	14
170	Relationship between lifting performance and skeletal muscle mass in elite powerlifters. Journal of Sports Medicine and Physical Fitness, 2013, 53, 409-14.	0.7	7
171	Effects of Blood Flow Restricted Low-Intensity Concentric or Eccentric Training on Muscle Size and Strength. PLoS ONE, 2012, 7, e52843.	2.5	134
172	Cardiovascular drift during low intensity exercise with leg blood flow restriction. Acta Physiologica Hungarica, 2012, 99, 392-399.	0.9	12
173	Ultrasound Assessment of Adductor Muscle Size Using Muscle Thickness of the Thigh. Journal of Sport Rehabilitation, 2012, 21, 244-248.	1.0	23
174	Cardiovascular and perceptual responses to bloodâ€flowâ€restricted resistance exercise with differing restrictive cuffs. Clinical Physiology and Functional Imaging, 2012, 32, 331-337.	1.2	104
175	Component characteristics of thigh muscle volume in young and older healthy men. Clinical Physiology and Functional Imaging, 2012, 32, 89-93.	1.2	47
176	Exercise intensity and muscle hypertrophy in blood flow–restricted limbs and nonâ€restricted muscles: a brief review. Clinical Physiology and Functional Imaging, 2012, 32, 247-252.	1.2	78
177	Relationship between site-specific loss of thigh muscle and gait performance in women: The HIREGASAKI study. Archives of Gerontology and Geriatrics, 2012, 55, e21-e25.	3.0	37
178	Influence of Severe Sarcopenia on Cardiovascular Risk Factors in Nonobese Men. Metabolic Syndrome and Related Disorders, 2012, 10, 407-412.	1.3	28
179	Muscle aponeurosis area in hypertrophied and normal muscle. Journal of Trainology, 2012, 1, 23-27.	0.5	6
180	Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups. Journal of Nutrition, Health and Aging, 2012, 16, 534-538.	3.3	21

#	Article	IF	CITATIONS
181	Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. European Journal of Applied Physiology, 2012, 112, 2903-2912.	2.5	279
182	Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: the HIREGASAKI study. Aging Clinical and Experimental Research, 2012, 24, 657-62.	2.9	23
183	Increases in Thigh Muscle Volume and Strength by Walk Training with Leg Blood Flow Reduction in Older Participants. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 257-263.	3.6	122
184	Effects of 10 Weeks Walk Training With Leg Blood Flow Reduction on Carotid Arterial Compliance and Muscle Size in the Elderly Adults. Angiology, 2011, 62, 81-86.	1.8	74
185	Comparison of ultrasound-measured age-related, site-specific muscle loss between healthy Japanese and German men. Clinical Physiology and Functional Imaging, 2011, 31, 320-325.	1.2	41
186	Relationship between limb and trunk muscle hypertrophy following highâ€intensity resistance training and blood flow–restricted lowâ€intensity resistance training. Clinical Physiology and Functional Imaging, 2011, 31, 347-351.	1.2	58
187	Effects of walking with blood flow restriction on limb venous compliance in elderly subjects. Clinical Physiology and Functional Imaging, 2011, 31, 472-476.	1.2	50
188	Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. European Journal of Applied Physiology, 2011, 111, 2525-2533.	2.5	155
189	Comparison of Age-Related, Site-Specific Muscle Loss Between Young and Old Active and Inactive Japanese Women. Journal of Geriatric Physical Therapy, 2011, 34, 168-173.	1.1	26
190	Association of vigorous physical activity with age-related, site-specific loss of thigh muscle in women: the HIREGASAKI study. Journal of Trainology, 2011, 1, 6-9.	0.5	12
191	Relationship Between Body Composition and 100-M Running Time in an Elite Female Sprinter: A 7-Year Retrospective Study. Medicina Sportiva, 2011, 15, 227-229.	0.3	5
192	Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. Journal of Sports Science and Medicine, 2011, 10, 145-50.	1.6	87
193	Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow. Journal of Sports Science and Medicine, 2011, 10, 338-40.	1.6	31
194	The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. European Journal of Applied Physiology, 2010, 108, 147-155.	2.5	194
195	Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism: Clinical and Experimental, 2010, 59, 1510-1519.	3.4	138
196	Effects of lowâ€intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clinical Physiology and Functional Imaging, 2010, 30, 338-343.	1.2	146
197	Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. Journal of Applied Physiology, 2010, 108, 1199-1209.	2.5	288
198	Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2MAX in Young Men. Journal of Sports Science and Medicine, 2010, 9, 452-8.	1.6	108

#	Article	IF	CITATIONS
199	Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. Journal of Geriatric Physical Therapy, 2010, 33, 34-40.	1.1	106
200	Muscle activation during low-intensity muscle contractions with restricted blood flow. Journal of Sports Sciences, 2009, 27, 479-489.	2.0	154
201	Is the use of ultrasound-derived prediction equations for adults useful for estimating total and regional skeletal muscle mass in Japanese children?. British Journal of Nutrition, 2009, 101, 72-78.	2.3	18
202	Effect of Resistance Exercise with Blood Flow Restriction on Muscle Protein Synthesis and mTOR Signaling in Older Men. FASEB Journal, 2009, 23, 954.12.	0.5	0
203	Human Muscle Gene Expression following Resistance Exercise and Blood Flow Restriction. Medicine and Science in Sports and Exercise, 2008, 40, 691-698.	0.4	143
204	High REE in Sumo Wrestlers Attributed to Large Organ-Tissue Mass. Medicine and Science in Sports and Exercise, 2007, 39, 688-693.	0.4	25
205	Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology, 2007, 103, 903-910.	2.5	367
206	Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. European Journal of Applied Physiology, 2007, 100, 275-285.	2.5	124
207	Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. European Journal of Applied Physiology, 2006, 96, 24-31.	2.5	201
208	Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology, 2006, 100, 1460-1466.	2.5	476
209	Body composition and resting metabolic rate of Japanese college Sumo wrestlers and non-athlete students: are Sumo wrestlers obese?. Anthropological Science, 2004, 112, 179-185.	0.4	9
210	The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. European Journal of Applied Physiology, 2002, 86, 327-336.	2.5	118
211	Relationship Between Sprint Performance and Muscle Fascicle Length in Female Sprinters Journal of Physiological Anthropology and Applied Human Science, 2001, 20, 141-147.	0.4	115
212	Muscle enlargement in sumo wrestlers includes increased muscle fascicle length. European Journal of Applied Physiology, 2000, 83, 289-296.	2.5	34
213	Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. European Journal of Applied Physiology and Occupational Physiology, 2000, 81, 0174.	1.2	356
214	Sprint performance is related to muscle fascicle length in male 100-m sprinters. Journal of Applied Physiology, 2000, 88, 811-816.	2.5	308
215	Fascicle length of leg muscles is greater in sprinters than distance runners. Medicine and Science in Sports and Exercise, 2000, 32, 1125-1129.	0.4	251
216	Architectural characteristics of muscle in black and white college football players. Medicine and Science in Sports and Exercise, 1999, 31, 1448.	0.4	39

#	Article	IF	CITATIONS
217	Gender differences in FFM accumulation and architectural characteristics of muscle. Medicine and Science in Sports and Exercise, 1998, 30, 1066-1070.	0.4	81
218	Total and segmental subcutaneous adipose tissue volume measured by ultrasound. Medicine and Science in Sports and Exercise, 1996, 28, 908-912.	0.4	21
219	Prediction equations for body composition of Japanese adults by B-mode ultrasound. American Journal of Human Biology, 1994, 6, 161-170.	1.6	239
220	Upper limit of fat-free mass in humans: A study on Japanese Sumo wrestlers. American Journal of Human Biology, 1994, 6, 613-618.	1.6	30
221	Relationships between Subcutaneous Fat and Muscle Distributions and Serum HDL-cholesterol. Journal of Atherosclerosis and Thrombosis, 1994, 1, 15-22.	2.0	11
222	Is an Exercise Intervention the only way to Reduce Visceral Fat without Reducing Fat-free Mass in Children and Adolescents?. Exercise Medicine, 0, 5, 2.	0.0	1