
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mineralogy and diagenesis of Mars-analog paleosols from eastern Oregon, USA. Icarus, 2022, 380, 114965.	2.5	4
2	Oxidized and Reduced Sulfur Observed by the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover Within the Glen Torridon Region at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
3	Evolved Gas Analyses of Sedimentary Rocks From the Glen Torridon Clayâ€Bearing Unit, Gale Crater, Mars: Results From the Mars Science Laboratory Sample Analysis at Mars Instrument Suite. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
4	Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proceedings of the United States of America, 2022, 119, .	7.1	14
5	Detection of Organic Carbon in Marsâ€Analog Paleosols With Thermal and Evolved Gas Analysis. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
6	Formation of Tridymite and Evidence for a Hydrothermal History at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006569.	3.6	21
7	Reactive Transport Modeling of Aqueous Alteration in the Murray Formation, Gale Crater, Mars. ACS Earth and Space Chemistry, 2021, 5, 424-435.	2.7	2
8	A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. Minerals (Basel, Switzerland), 2021, 11, 475.	2.0	14
9	Formation of Fe(III) (Hydr)oxides from Fe(II) Sulfides: Implications for Akaganeite Detection on Mars. ACS Earth and Space Chemistry, 2021, 5, 1934-1947.	2.7	7
10	Brine-driven destruction of clay minerals in Gale crater, Mars. Science, 2021, 373, 198-204.	12.6	52
11	A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. Minerals (Basel, Switzerland), 2021, 11, 847.	2.0	23
12	Highâ€Temperature HCl Evolutions From Mixtures of Perchlorates and Chlorides With Waterâ€Bearing Phases: Implications for the SAM Instrument in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006173.	3.6	6
13	Constraints on the Mineralogy and Geochemistry of Vera Rubin Ridge, Gale Crater, Mars, From Mars Science Laboratory Sample Analysis at Mars Evolved Gas Analyses. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006309.	3.6	32
14	Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006306.	3.6	86
15	Hydrothermal Precipitation of Sanidine (Adularia) Having Full Al,Si Structural Disorder and Specular Hematite at Maunakea Volcano (Hawai'i) and at Gale Crater (Mars). Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006324.	3.6	14
16	Evidence for Multiple Diagenetic Episodes in Ancient Fluvial‣acustrine Sedimentary Rocks in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006295.	3.6	45
17	Particle Induced X-ray Emission spectrometry (PIXE) of Hawaiian volcanics: An analogue study to evaluate the APXS field analysis of geologic materials on Mars. Icarus, 2020, 345, 113708.	2.5	9
18	Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy, 2020, 4, 526-532.	10.1	41

#	Article	IF	CITATIONS
19	Evidence for Adsorption of Chlorine Species on Iron (III) (Hydr)oxides in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006220.	3.6	6
20	Reaction of Akaganeite with Mars-Relevant Anions. ACS Earth and Space Chemistry, 2019, 3, 314-323.	2.7	14
21	Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2019, 124, 94-113.	3.6	23
22	Seasonal Atmospheric Argon Variability Measured in the Equatorial Region of Mars by the Mars Exploration Rover Alpha Particle Xâ€Ray Spectrometers: Evidence for an Annual Argonâ€Enriched Front. Journal of Geophysical Research E: Planets, 2018, 123, 544-558.	3.6	6
23	Diverse Lithologies and Alteration Events on the Rim of Noachianâ€Aged Endeavour Crater, Meridiani Planum, Mars: In Situ Compositional Evidence. Journal of Geophysical Research E: Planets, 2018, 123, 1255-1306.	3.6	28
24	Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars. Geochimica Et Cosmochimica Acta, 2018, 220, 248-260.	3.9	26
25	Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 2018, 103, 1011-1020.	1.9	96
26	Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. American Mineralogist, 2018, 103, 857-871.	1.9	94
27	Relationships between unit-cell parameters and composition for rock-forming minerals on Earth, Mars, and other extraterrestrial bodies. American Mineralogist, 2018, 103, 848-856.	1.9	40
28	Chlorate/Feâ€Bearing Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars Instrument in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2920-2938.	3.6	26
29	Effect of Solution pH and Chloride Concentration on Akaganeite Precipitation: Implications for Akaganeite Formation on Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2211-2222.	3.6	20
30	Major Volatiles Evolved From Eolian Materials in Gale Crater. Geophysical Research Letters, 2018, 45, 10,240.	4.0	19
31	Sand Mineralogy Within the Bagnold Dunes, Gale Crater, as Observed In Situ and From Orbit. Geophysical Research Letters, 2018, 45, 9488-9497.	4.0	52
32	The Effect of Marsâ€Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ€Surface of Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2076-2088.	3.6	18
33	Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 2018, 4, eaar3330.	10.3	150
34	Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 2018, 360, 1096-1101.	12.6	369
35	The nitrate/(per)chlorate relationship on Mars. Geophysical Research Letters, 2017, 44, 2643-2651.	4.0	49
36	Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2344-2361.	3.6	98

3

#	Article	IF	CITATIONS
37	Redox stratification of an ancient lake in Gale crater, Mars. Science, 2017, 356, .	12.6	209
38	Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. Journal of Geophysical Research E: Planets, 2017, 122, 2510-2543.	3.6	95
39	Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. Journal of Geophysical Research E: Planets, 2017, 122, 1747-1772.	3.6	42
40	Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geoscience, 2017, 10, 658-662.	12.9	53
41	Measurements of Oxychlorine species on Mars. International Journal of Astrobiology, 2017, 16, 203-217.	1.6	33
42	Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research E: Planets, 2017, 122, 2574-2609.	3.6	168
43	A Twoâ€Step Kâ€Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters. Journal of Geophysical Research E: Planets, 2017, 122, 2803-2818.	3.6	72
44	THE AMORPHOUS COMPOSITION OF THREE MUDSTONE SAMPLES FROM GALE CRATER: IMPLICATIONS FOR WEATHERING AND DIAGENETIC PROCESSES ON MARS. , 2017, , .		2
45	Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 2016, 43, 7398-7407.	4.0	110
46	Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin Xâ€ray diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research E: Planets, 2016, 121, 75-106.	3.6	159
47	A global Mars dust composition refined by the Alphaâ€Particle Xâ€ray Spectrometer in Gale Crater. Geophysical Research Letters, 2016, 43, 67-75.	4.0	95
48	Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars. American Mineralogist, 2016, 101, 1515-1526.	1.9	19
49	Silicic volcanism on Mars evidenced by tridymite in high-SiO ₂ sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7071-7076.	7.1	158
50	Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observationsk. American Mineralogist, 2016, 101, 678-689.	1.9	23
51	Large wind ripples on Mars: A record of atmospheric evolution. Science, 2016, 353, 55-58.	12.6	144
52	LOCALIZED AND AREALLY EXTENSIVE ALTERATIONS IN MARATHON VALLEY, ENDEAVOUR CRATER RIM, MARS. , 2016, , .		3
53	MINERALOGY OF MUDSTONE AT GALE CRATER, MARS: EVIDENCE FOR DYNAMIC LACUSTRINE ENVIRONMENTS. , 2016, , .		1
54	Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E:	3.6	375

Planets, 2015, 120, 495-514.

3.6 375

#	Article	IF	CITATIONS
55	The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American Mineralogist, 2015, 100, 824-836.	1.9	122
56	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	7.1	172
57	The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.	12.6	113
58	Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater. American Mineralogist, 2014, 99, 2234-2250.	1.9	67
59	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
60	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
61	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
62	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
63	Ancient Aqueous Environments at Endeavour Crater, Mars. Science, 2014, 343, 1248097.	12.6	176
64	Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatileâ€rich igneous source. Journal of Geophysical Research E: Planets, 2014, 119, 64-81.	3.6	113
65	Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 373-393.	3.6	65
66	Abundances and implications of volatileâ€bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 237-254.	3.6	73
67	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
68	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
69	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
70	The effects of instrument parameters and sample properties on thermal decomposition: interpreting thermal analysis data from Mars. Planetary Science, 2013, 2, .	1.5	25
71	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
72	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134

#	Article	IF	CITATIONS
73	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
74	Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research E: Planets, 2013, 118, 1955-1973.	3.6	306
75	Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory. Space Science Reviews, 2012, 170, 341-399.	8.1	220
76	The Sample Analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 2012, 170, 401-478.	8.1	435
77	Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science, 2012, 336, 570-576.	12.6	176
78	Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA). Geophysical Research Letters, 2012, 39, .	4.0	33
79	Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover. Science, 2010, 329, 421-424.	12.6	358
80	Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 2010, 37, .	4.0	92
81	H ₂ O at the Phoenix Landing Site. Science, 2009, 325, 58-61.	12.6	500
82	Evidence for Calcium Carbonate at the Mars Phoenix Landing Site. Science, 2009, 325, 61-64.	12.6	300
83	Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. Science, 2009, 325, 64-67.	12.6	913
84	The MECA Wet Chemistry Laboratory on the 2007 Phoenix Mars Scout Lander. Journal of Geophysical Research, 2009, 114, .	3.3	56
85	Hydrothermal origin of halogens at Home Plate, Gusev Crater. Journal of Geophysical Research, 2008, 113, .	3.3	71
86	Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle Xâ€Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research, 2008, 113, .	3.3	162
87	Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the MA¶ssbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 2008, 113, .	3.3	162
88	Hyperspectral reflectance mapping of cinder cones at the summit of Mauna Kea and implications for equivalent observations on Mars. Journal of Geophysical Research, 2007, 112, .	3.3	18
89	Pyroclastic Activity at Home Plate in Gusev Crater, Mars. Science, 2007, 316, 738-742.	12.6	174
90	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149

#	Article	IF	CITATIONS
91	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
92	Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	342
93	Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	234
94	Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	314
95	Nickel on Mars: Constraints on meteoritic material at the surface. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	65
96	Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	225
97	An integrated view of the chemistry and mineralogy of martian soils. Nature, 2005, 436, 49-54.	27.8	348
98	Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 2005, 436, 66-69.	27.8	240
99	Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature, 2005, 436, 62-65.	27.8	125
100	Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site. Science, 2004, 306, 1723-1726.	12.6	153
101	Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. Science, 2004, 306, 1740-1745.	12.6	733
102	Mineralogy at Gusev Crater from the Mossbauer Spectrometer on the Spirit Rover. Science, 2004, 305, 833-836.	12.6	279
103	Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum. Science, 2004, 306, 1730-1733.	12.6	130
104	Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater. Science, 2004, 305, 821-824.	12.6	166
105	The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars. Science, 2004, 306, 1698-1703.	12.6	507
106	Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer. Science, 2004, 305, 829-832.	12.6	291
107	Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science, 2004, 306, 1746-1749.	12.6	370
108	Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust?. Journal of Geophysical Research, 2001, 106, 5057-5083.	3.3	95

#	Article	IF	CITATIONS
109	Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research, 2000, 105, 1757-1817.	3.3	294
110	Mineralogy of three slightly palagonitized basaltic tephra samples from the summit of Mauna Kea, Hawaii. Journal of Geophysical Research, 1993, 98, 3401-3411.	3.3	56