
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controllable Photoelectric Properties of Carbon Dots and Their Application in Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 7-20.	3.8	7
2	Preparation, Properties, and Application of Graphene-Based Materials in Tissue Engineering Scaffolds. Tissue Engineering - Part B: Reviews, 2022, 28, 1121-1136.	4.8	11
3	Tunable full-color solid-state fluorescent carbon dots for light emitting diodes. Carbon, 2022, 190, 22-31.	10.3	79
4	Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers. Journal of Materials Chemistry A, 2022, 10, 9184-9194.	10.3	17
5	Orange-emissive carbon quantum dots for ligand-directed Golgi apparatus-targeting and <i>in vivo</i> imaging. Biomaterials Science, 2022, 10, 4345-4355.	5.4	14
6	3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density. Nano-Micro Letters, 2021, 13, 8.	27.0	64
7	N, B-Codoping Induces High-Efficiency Solid-State Fluorescence and Dual Emission of Yellow/Orange Carbon Dots. ACS Sustainable Chemistry and Engineering, 2021, 9, 2224-2236.	6.7	76
8	Clusteringâ€induced White Light Emission from Carbonized Polymer Dots. Advanced Photonics Research, 2021, 2, 2000161.	3.6	8
9	Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Frontiers of Materials Science, 2021, 15, 253-265.	2.2	24
10	An acid induction strategy to construct an ultralight and durable amino-functionalized graphene oxide aerogel for enhanced quinoline pollutants extraction from coking wastewater. Chemical Engineering Journal, 2021, 412, 128686.	12.7	27
11	Clusteringâ€Induced White Light Emission from Carbonized Polymer Dots. Advanced Photonics Research, 2021, 2, 2170016.	3.6	0
12	Preparation of nitrogen-doped hollow carbon nanosphere/graphene composite aerogel for efficient removal of quinoline from wastewater. Journal of Hazardous Materials, 2021, 417, 126160.	12.4	17
13	Highly stable yellow-emitting fluorescent film based on graphene quantum dots for white laser-emitting devices. Journal of Luminescence, 2021, 238, 118275.	3.1	4
14	Ni@Ni ₃ N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48536-48545.	8.0	23
15	Research Progress in the Synthesis of Targeting Organelle Carbon Dots and Their Applications in Cancer Diagnosis and Treatment. Journal of Biomedical Nanotechnology, 2021, 17, 1891-1916.	1.1	4
16	Effect of reduction methods and functionalization on the dispersion of graphene in epoxy. Journal of Dispersion Science and Technology, 2020, 41, 297-306.	2.4	7
17	Magnetic carbon nanospheres: Synthesis, characterization, and adsorbability towards quinoline from coking wastewater. Chemical Engineering Journal, 2020, 382, 122995.	12.7	31
18	An Efficient Synthesis and Photoelectric Properties of Green Carbon Quantum Dots with High Fluorescent Quantum Yield. Nanomaterials, 2020, 10, 82.	4.1	50

#	Article	IF	CITATIONS
19	Orange-emissive carbon dot phosphors for warm white light-emitting diodes with high color rendering index. Optical Materials, 2020, 109, 110346.	3.6	17
20	Effect of Surfactant Polyvinyl Pyrrolidone on the Properties of Microporous Carbon Nanospheres Reinforced Magnesium Matrix Composites. Nanomaterials, 2020, 10, 2281.	4.1	2
21	Solid-state fluorescent carbon dots: quenching resistance strategies, high quantum efficiency control, multicolor tuning, and applications. Materials Advances, 2020, 1, 3122-3142.	5.4	39
22	Revealing the Interfacial Photoreduction of MoO ₃ with P3HT from the Molecular Weight-Dependent "Burn-In―Degradation of P3HT:PC ₆₁ BM Solar Cells. ACS Applied Energy Materials, 2020, 3, 9714-9723.	5.1	13
23	Simultaneous Performance and Stability Improvement of Ternary Polymer Solar Cells Enabled by Modulating the Molecular Packing of Acceptors. Solar Rrl, 2020, 4, 2000374.	5.8	15
24	Zinc Oxide Coated Carbon Dot Nanoparticles as Electron Transport Layer for Inverted Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 11388-11397.	5.1	16
25	Functionalized silver nanoparticles with graphene quantum dots shell layer for effective antibacterial action. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	22
26	A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. Journal of Hazardous Materials, 2020, 392, 122499.	12.4	92
27	Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor. RSC Advances, 2020, 10, 11966-11970.	3.6	6
28	Enhanced-fluorescent imaging and targeted therapy of liver cancer using highly luminescent carbon dots-conjugated foliate. Materials Science and Engineering C, 2020, 116, 111233.	7.3	33
29	The interfacial degradation mechanism of polymer:fullerene bis-adduct solar cells and their stability improvement. Materials Advances, 2020, 1, 1307-1317.	5.4	9
30	Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emission. Nanomaterials, 2020, 10, 303.	4.1	23
31	Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 2020, 251, 126376.	8.2	51
32	Ultrafast synthesis of magnetic hollow carbon nanospheres for the adsorption of quinoline from coking wastewater. New Journal of Chemistry, 2020, 44, 7490-7500.	2.8	18
33	Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment. Materials Science in Semiconductor Processing, 2020, 117, 105205.	4.0	22
34	In Vitro Cytotoxicity and Antitumor Activity of Dual-Targeting Drug Delivery System Based on Modified Magnetic Carbon by Folate. Journal of Nanomaterials, 2020, 2020, 1-11.	2.7	1
35	Folic acid-conjugated magnetic ordered mesoporous carbon nanospheres for doxorubicin targeting delivery. Materials Science and Engineering C, 2019, 104, 109939.	7.3	30
36	Robust negative differential resistance and abnormal magnetoresistance effects in heteroatom-substituted zigzag Î ³ -graphyne nanoribbon homojunctions. Journal of Materials Chemistry C, 2019, 7, 1359-1369.	5.5	11

#	Article	IF	CITATIONS
37	Investigation on the chirality mechanism of chiral carbon quantum dots derived from tryptophan. RSC Advances, 2019, 9, 3208-3214.	3.6	56
38	Study on dispersion of reduced graphene oxide on physical performance of Polyvinylidene fluoride composites by Hansen solubility parameters. Colloid and Polymer Science, 2019, 297, 213-224.	2.1	26
39	Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. Journal of Materials Chemistry C, 2019, 7, 1502-1509.	5.5	55
40	Spin-filtering and tunneling magnetoresistance effects in 6,6,12-graphyne-based molecular magnetic tunnel junctions. Physical Chemistry Chemical Physics, 2019, 21, 2734-2742.	2.8	6
41	Hyperbranched Fractal Nanocarbons for Bright Photoluminescence in Solid State. Advanced Optical Materials, 2019, 7, 1900659.	7.3	11
42	Tailoring perovskite conversion and grain growth by in situ solvent assisted crystallization and compositional variation for highly efficient perovskite solar cells. Organic Electronics, 2019, 69, 208-215.	2.6	10
43	Construction of Carbon Microspheres-Based Silane Melamine Phosphate Hybrids for Flame Retardant Poly(ethylene Terephthalate). Polymers, 2019, 11, 545.	4.5	12
44	Rapid synthesis of nitrogen doped carbon dots with green fluorescent for bio-imaging. Optical Materials, 2019, 98, 109486.	3.6	11
45	Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. ACS Applied Materials & Interfaces, 2019, 11, 2243-2253.	8.0	94
46	Selective adsorption and separation of dibenzothiophene by molecularly imprinted polymer on the surface of porous magnetic carbon nanospheres. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 14-22.	2.1	14
47	One-step hydrothermal synthesis of fluorescence carbon quantum dots with high product yield and quantum yield. Nanotechnology, 2019, 30, 085406.	2.6	32
48	Application advances of carbon quantum dots in optoelectronic devices. Chinese Science Bulletin, 2019, 64, 1441-1455.	0.7	3
49	Towards understanding the initial performance improvement of PbS quantum dot solar cells upon short-term air exposure. RSC Advances, 2018, 8, 15149-15157.	3.6	19
50	Ultrahigh Brightness Carbon Dot–Based Blue Electroluminescent LEDs by Host–Guest Energy Transfer Emission Mechanism. Advanced Optical Materials, 2018, 6, 1800181.	7.3	51
51	Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica. Carbon, 2018, 126, 426-436.	10.3	109
52	Enhancing the flame retardant of polyethylene terephthalate (PET) fiber via incorporation of multi-walled carbon nanotubes based phosphorylated chitosan. Journal of the Textile Institute, 2018, 109, 871-878.	1.9	11
53	Influence of graphitization degree of carbon microspheres on properties of PET flame retardant. Polymer Engineering and Science, 2018, 58, 1399-1408.	3.1	6
54	Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application. Materials Science and Engineering C, 2018, 84, 21-31.	7.3	25

#	Article	IF	CITATIONS
55	Functionalized multiwalled carbon nanotubes by loading phosphorylated chitosan. High Performance Polymers, 2018, 30, 1036-1047.	1.8	5
56	Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes. New Carbon Materials, 2018, 33, 276-288.	6.1	54
57	Preparation of N-doped carbon dots based on starch and their application in white LED. Optical Materials, 2018, 86, 530-536.	3.6	35
58	Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+. Nano, 2018, 13, 1850140.	1.0	16
59	Facile and Rapid Synthesis of Yellow-Emission Carbon Dots for White Light-Emitting Diodes. Journal of Electronic Materials, 2018, 47, 7497-7504.	2.2	14
60	Antitumor effects of carbon nanotube‑drug complex against human breast cancer cells. Experimental and Therapeutic Medicine, 2018, 16, 1103-1110.	1.8	11
61	The synthesis of green fluorescent carbon dots for warm white LEDs. RSC Advances, 2018, 8, 19585-19595.	3.6	37
62	Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 2018, 10, 11211-11221.	5.6	67
63	Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO2 bilayered electron transport layers. RSC Advances, 2018, 8, 23019-23026.	3.6	17
64	A targeted drug delivery system based on carbon nanotubes loaded with lobaplatin toward liver cancer cells. Journal of Materials Research, 2018, 33, 2565-2575.	2.6	15
65	A fluorescein-centered polymer as a phosphor for fabricating pure white light-emitting diodes. Materials Horizons, 2018, 5, 932-938.	12.2	27
66	Accelerated formation and improved performance of CH ₃ NH ₃ PbI ₃ -based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A, 2017, 5, 4190-4198.	10.3	65
67	Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS ₂ Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 15484-15491.	8.0	102
68	External load-dependent degradation of P3HT:PC ₆₁ BM solar cells: behavior, mechanism, and method of suppression. Journal of Materials Chemistry A, 2017, 5, 10010-10020.	10.3	26
69	Fluorescent linear CO ₂ -derived poly(hydroxyurethane) for cool white LED. Journal of Materials Chemistry C, 2017, 5, 4892-4898.	5.5	44
70	Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier. Nanoscale Research Letters, 2017, 12, 354.	5.7	13
71	Synthesis of short-chain passivated carbon quantum dots as the light emitting layer towards electroluminescence. RSC Advances, 2017, 7, 28754-28762.	3.6	77
72	Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes. Optical Materials, 2017, 73, 319-329.	3.6	42

#	Article	IF	CITATIONS
73	Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices. Journal of Materials Chemistry C, 2017, 5, 8105-8111.	5.5	94
74	Recognition of 5â€fluorouracil by thermosensitive magnetic surface molecularly imprinted microspheres designed using a computational approach. Journal of Applied Polymer Science, 2017, 134, 45468.	2.6	12
75	Magnetic porous carbon microspheres synthesized by simultaneous activation and magnetization for removing methylene blue. Journal of Porous Materials, 2017, 24, 341-353.	2.6	21
76	Spectroscopic studies of bovine serum albumin adsorbed onto magnetic–thermosensitive carbon microspheres. Luminescence, 2016, 31, 1461-1467.	2.9	1
77	Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device. Applied Physics Letters, 2016, 109, .	3.3	20
78	Deposition of Ag nanoparticles on carbon microspheres surface: Evaluation of structures, electrochemical and optical properties. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 743-749.	1.0	0
79	Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer. Carbon, 2016, 109, 598-607.	10.3	70
80	Fluorescent polyvinyl alcohol films based on nitrogen and sulfur co-doped carbon dots towards white light-emitting devices. New Journal of Chemistry, 2016, 40, 8710-8716.	2.8	33
81	Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Applied Surface Science, 2016, 387, 1236-1246.	6.1	101
82	Porous Carbon Microspheres: An Excellent Support To Prepare Surface Molecularly Imprinted Polymers for Selective Removal of Dibenzothiophene in Fuel Oil. Industrial & Engineering Chemistry Research, 2016, 55, 1710-1719.	3.7	31
83	Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 18410-18417.	8.0	50
84	Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale, 2016, 8, 8618-8632.	5.6	129
85	Fluorescent probes for "off–on―highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta, 2016, 152, 288-300.	5.5	156
86	Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization. RSC Advances, 2016, 6, 12504-12513.	3.6	27
87	Molecularly imprinted polymers on the surface of porous carbon microspheres for capturing dibenzothiophene. Mikrochimica Acta, 2016, 183, 1153-1160.	5.0	19
88	Fluorescent Carbon Quantum Dots as Single Light Converter for White LEDs. Journal of Electronic Materials, 2016, 45, 2784-2788.	2.2	23
89	Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Materials Science and Engineering C, 2016, 61, 158-168.	7.3	88
90	Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution. Environmental Science: Nano, 2016, 3, 213-222.	4.3	62

#	Article	IF	CITATIONS
91	Optical properties of the composite film from P3HT and hydrothermally synthesized porous carbon nanospheres. Journal of Materials Research, 2015, 30, 1599-1610.	2.6	1
92	Thermoresponsive hollow magnetic microspheres with hyperthermia and controlled release properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
93	Carbon Dots: From Intense Absorption in Visible Range to Excitation-Independent and Excitation-Dependent Photoluminescence. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 922-929.	2.1	47
94	P3HT/Dodecylamine Functioned Carbon Microspheres Composite Films for Polymer Solar Cells. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 549-556.	2.1	9
95	Functional monomer screening and preparation of dibenzothiophene-imprinted polymers on the surface of carbon microsphere. Monatshefte FÃ1⁄4r Chemie, 2015, 146, 449-458.	1.8	15
96	Low-Temperature Hydrothermal Synthesis of Green Luminescent Carbon Quantum Dots (CQD), and Optical Properties of Blends of the CQD with Poly(3-hexylthiophene). Journal of Electronic Materials, 2015, 44, 3436-3443.	2.2	30
97	Synthesis and optical properties of composite films from P3HT and sandwich-like Ag–C–Ag nanoparticles. RSC Advances, 2015, 5, 79860-79867.	3.6	7
98	Preparation and characterization of 5-fluorouracil surface-imprinted thermosensitive magnetic microspheres. Monatshefte Für Chemie, 2015, 146, 441-447.	1.8	7
99	Instant Growth of the Secondary Carbon Fibers on a Matrix Carbon Fiber by Chemical Vapor Deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 49-53.	2.1	Ο
100	The effects of surface modifications of multiwalled carbon nanotubes on their dispersibility in different solvents and poly(ether ether ketone). Journal of Materials Research, 2014, 29, 2625-2633.	2.6	9
101	Preparation and characterization of thermosensitive core/shell microgels with carbon microsphere cores. Journal of Materials Research, 2014, 29, 1153-1161.	2.6	8
102	Spin-coated P3HT:Aminated carbon microsphere composite films for polymer solar cells. Journal of Materials Research, 2014, 29, 492-500.	2.6	3
103	Growth and characterization of flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Journal of Materials Science, 2014, 49, 2347-2354.	3.7	20
104	Magnetic thermosensitive core/shell microspheres: synthesis, characterization and performance in hyperthermia and drug delivery. RSC Advances, 2014, 4, 46806-46812.	3.6	35
105	Size-dependent magnetic order and giant magnetoresistance in organic titanium–benzene multidecker cluster. Physical Chemistry Chemical Physics, 2014, 16, 1902-1908.	2.8	8
106	Efficient adsorptive removal of dibenzothiophene by graphene oxide-based surface molecularly imprinted polymer. RSC Advances, 2014, 4, 1469-1475.	3.6	55
107	Thermal Stability and Surface Chemistry Evolution of Oxidized Carbon Microspheres. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 670-678.	2.1	11
108	Influence of surface modification of carbon nanotube on microstructures and properties of polyamide 66/multiwalled carbon nanotube composites. Polymer Composites, 2013, 34, 656-664.	4.6	15

#	Article	IF	CITATIONS
109	Synthesis and optical property of P3HT/carbon microsphere composite film. Journal of Materials Research, 2013, 28, 998-1003.	2.6	7
110	The spin-filter capability and spin-reversal effect of multidecker iron-borazine sandwich cluster. Applied Physics Letters, 2012, 101, 102405.	3.3	7
111	Preparation and self-assembly of chitosan/carbon microsphere composite. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 454-458.	1.0	4
112	Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. Journal of Nanoparticle Research, 2011, 13, 1979-1986.	1.9	25
113	Solvothermal synthesis and ferromagnetic property of bamboo-shoot-like oriented carbon micromaterials. Science Bulletin, 2010, 55, 3838-3841.	1.7	1
114	Synthesis of nano onion-like fullerenes by using Fe/Al2O3 as catalyst by chemical vapor deposition. Science Bulletin, 2009, 54, 137-141.	1.7	17
115	Fe-encapsulating carbon nano onionlike fullerenes from heavy oil residue. Journal of Materials Research, 2008, 23, 1393-1397.	2.6	17
116	Surface Modification of Vapor-grown Carbon Nanofibers in Radio Frequency Plasma. Chinese Journal of Chemical Physics, 2007, 20, 759-762.	1.3	1