Gintautas Saulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450329/publications.pdf Version: 2024-02-01

Article	IF	CITATIONS
Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Engineering Reviews, 2010, 2, 52-73.	5.9	185
Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 2016, 9, 94.	6.2	179
Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Archives of Biochemistry and Biophysics, 2012, 527, 55-64.	3.0	156
Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3032-3039.	2.6	95
Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry, 2005, 67, 101-108.	4.6	67
Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types. Cellular and Molecular Life Sciences, 2017, 74, 1741-1754.	5.4	50
Release of Iron Ions From the Stainless Steel Anode Occurring During High-Voltage Pulses and Its Consequences for Cell Electroporation Technology. IEEE Transactions on Plasma Science, 2014, 42, 249-254.	1.3	34
Determination of cell electroporation from the release of intracellular potassium ions. Analytical Biochemistry, 2007, 360, 273-281.	2.4	32
Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy. Bioelectrochemistry, 2007, 70, 519-523.	4.6	30
Electric fieldâ€induced effects on yeast cell wall permeabilization. Bioelectromagnetics, 2014, 35, 136-144.	1.6	24
In vitro cytotoxicity studies of industrial Eucalyptus kraft lignins on mouse hepatoma, melanoma and Chinese hamster ovary cells. International Journal of Biological Macromolecules, 2019, 135, 353-361.	7.5	24
Physicochemical and in vitro cytotoxic properties of chitosan from mushroom species (Boletus) Tj ETQq0 0 0 rgB	Г /Overlocl 10:2	k 10 Tf 50 3
The loading of human erythrocytes with small molecules by electroporation. Cellular and Molecular Biology Letters, 2005, 10, 23-35.	7.0	20
Theoretical Analysis and Experimental Determination of the Relationships Between the Parameters of the Electric Field Pulse Required to Electroporate the Cells. IEEE Transactions on Plasma Science, 2013, 41, 2913-2919.	1.3	14
System for the Nanoporation of Biological Cells Based on an Optically-Triggered High-Voltage Spark-Gap Switch. IEEE Transactions on Plasma Science, 2013, 41, 2706-2711.	1.3	10
	Article Electroparation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing: Food Engineering Reviews, 2010, 2, 52-73. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable elevelopment. Biotechnology for Biofuels, 2016, 9, 94. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Archives of Biochemistry and Biophysics, 2012, 527, 55-64. Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3032-3039. Conges of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry, 2005, 67, 101-108. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types. Cellular and Molecular Life Sciences, 2017, 74, 1741-1754. Release of Iron Ions From the Stainless Steel Anode Occurring During High-Voltage Pulses and Its Consequences for Cell Electroporation Technology. IEEE Transactions on Plasma Science, 2014, 42, 249-254. Determination of cell electroporation from the release of Intracellular potassium Ions. Analytical Biochemistry, 2007, 360, 273-281. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy. Bioelectrochemistry, 2007, 70, 519-523. Protestical Analysis of Industrial Eu	ARTICLEIFElectroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Fooda.9Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainablea.2Oxidative effects of nanosecond pulsed electric fields for bioeconomy and sustainablea.0Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Archivesa.0Size of the pores created by an electric pulse: Microsecond ys millisecond pulses. Biochimica Et2.6Changes of the solution pH due to exposure by high-voltage electric pulses. Biochemistry,a.6Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.a.4Cellular and Molecular Life Sciences, 2017, 74, 1741-1754.a.4Release of fron Ions From the Stainless Steel Anode Occurring During High-Voltage Pulses and Hsa.4Release of the roughness of the stainless Steel Anode Occurring During High-Voltage Pulses and Hsa.4Consequences for Cell Electroporation Technology. IEEE Transactions on Plasma Science, 2014, 42, 44a.4Release of the roughness of the stainless steel anode surface due to the exposure to high-voltagea.6Increase of the roughness of the stainless steel anode surface due to the exposure and high-voltage of types.a.6Increase of the roughness of the stainless steel anode surface due to the exposure to high-voltagea.6Increase of the roughness of the stainless steel anode surface due to the exposure to high-voltagea.6Increase of the roughness of the stainless steel anode surface due to the exposure to high-voltagea.6Incre

17	Cytotoxicity of a Cell Culture Medium Treated with a High-Voltage Pulse Using Stainless Steel Electrodes and the Role of Iron Ions. Membranes, 2022, 12, 184.	3.0	5

Determination of cell electroporation in small-volume samples by using a mini potassium-selective electrode. Analytical Biochemistry, 2005, 345, 340-342.

18 Cell Electromanipulation Procedures Change the pH of a Solution. , 1999, , 263-266.

4

7

2.4

16

#	Article	IF	CITATIONS
19	Determination of cell electroporation in small-volume samples. Biomedical Sciences Instrumentation, 2007, 43, 306-11.	0.2	4
20	The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of Cytotoxicity of Bisphosphonates and Menadione. Journal of Membrane Biology, 2016, 249, 611-621.	2.1	2
21	On the Mechanism of Synergistic Cytotoxicity of Vitamins C and K3: Experiments in Vitro and Quantum-Chemical Analysis. Biophysical Journal, 2012, 102, 576a.	0.5	1
22	Iron Ions Released from the Stainless-Steel Anode during High-Voltage Pulse Quench the Fluorescence of Calcein in both Solution and Electroporated Cells. Biophysical Journal, 2012, 102, 730a.	0.5	1
23	To breathe or not to breathe? Hypoxia after pulsed-electric field treatment reduces the effectiveness of electrochemotherapy in vitro. Bioelectrochemistry, 2021, 137, 107636.	4.6	1
24	Modeling of the Processes of Pore Creation and Disappearance in a Cell Under the Influence of Strong Electric Field as Random One-Step Processes. , 1999, , 437-440.		0