
Dorothy E Shippen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450019/publications.pdf Version: 2024-02-01

DODOTHY E SHIDDEN

#	Article	IF	CITATIONS
1	Plasticity, pleiotropy and fitness tradeâ€offs in Arabidopsis genotypes with different telomere lengths. New Phytologist, 2022, 233, 1939-1952.	7.3	6
2	Quantification of 8-oxoG in Plant Telomeres. International Journal of Molecular Sciences, 2022, 23, 4990.	4.1	5
3	PROTECTION OF TELOMERES 1b Modulates Cellular ROS and Chromatin Structure in <i>Arabidopsis thaliana</i> . FASEB Journal, 2022, 36, .	0.5	Ο
4	Plant telomere biology: The green solution to the end-replication problem. Plant Cell, 2022, 34, 2492-2504.	6.6	14
5	Natural variation in plant telomere length is associated with flowering time. Plant Cell, 2021, 33, 1118-1134.	6.6	29
6	A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics, 2021, 219, .	2.9	6
7	Arabidopsis retains vertebrate-type telomerase accessory proteins via a plant-specific assembly. Nucleic Acids Research, 2021, 49, 9496-9507.	14.5	6
8	tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana. Plant Cell Reports, 2020, 39, 1669-1685.	5.6	8
9	Functional Diversification of Replication Protein A Paralogs and Telomere Length Maintenance in Arabidopsis. Genetics, 2020, 215, 989-1002.	2.9	12
10	Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Current Biology, 2020, 30, 573-588.e7.	3.9	160
11	Change and HOAP for the best. ELife, 2020, 9, .	6.0	Ο
12	Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress. Journal of Biological Chemistry, 2019, 294, 14803-14813.	3.4	8
13	Recent emergence and extinction of the protection of telomeres 1c gene in Arabidopsis thaliana. Plant Cell Reports, 2019, 38, 1081-1097.	5.6	6
14	The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24542-24550.	7.1	33
15	Components of the ribosome biogenesis pathway underlie establishment of telomere length set point in Arabidopsis. Nature Communications, 2019, 10, 5479.	12.8	16
16	Breaking new ground: the emergence of nonâ€canonical functions for telomerase subunits in plants. FASEB Journal, 2019, 33, 341.1.	0.5	0
17	DDM1 guards against telomere truncation in Arabidopsis. Plant Cell Reports, 2018, 37, 501-513.	5.6	16
18	What's in a name?. ELife, 2017, 6, .	6.0	10

6.0 10

#	Article	IF	CITATIONS
19	Dynamic Interactions of Arabidopsis TEN1: Stabilizing Telomeres in Response to Heat Stress. Plant Cell, 2016, 28, 2212-2224.	6.6	26
20	Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation. Nucleic Acids Research, 2016, 44, gkw807.	14.5	10
21	Evolution of TERT-interacting lncRNAs: expanding the regulatory landscape of telomerase. Frontiers in Genetics, 2015, 6, 277.	2.3	16
22	Evolution of the Telomere-Associated Protein POT1a in Arabidopsis thaliana Is Characterized by Positive Selection to Reinforce Protein–Protein Interaction. Molecular Biology and Evolution, 2015, 32, 1329-1341.	8.9	26
23	Single-Cell Telomere-Length Quantification Couples Telomere Length to Meristem Activity and Stem Cell Development in Arabidopsis. Cell Reports, 2015, 11, 977-989.	6.4	24
24	A Transposable Element within the Non-canonical Telomerase RNA of Arabidopsis thaliana Modulates Telomerase in Response to DNA Damage. PLoS Genetics, 2015, 11, e1005281.	3.5	26
25	Analysis of Poly(ADP-Ribose) Polymerases in Arabidopsis Telomere Biology. PLoS ONE, 2014, 9, e88872.	2.5	27
26	POT1a and Components of CST Engage Telomerase and Regulate Its Activity in Arabidopsis. PLoS Genetics, 2014, 10, e1004738.	3.5	35
27	<i>MERISTEM DISORGANIZATION1</i> Encodes TEN1, an Essential Telomere Protein That Modulates Telomerase Processivity in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1343-1354.	6.6	33
28	Selaginella moellendorffii telomeres: conserved and unique features in an ancient land plant lineage. Frontiers in Plant Science, 2012, 3, 161.	3.6	10
29	An alternative telomerase RNA in <i>Arabidopsis</i> modulates enzyme activity in response to DNA damage. Genes and Development, 2012, 26, 2512-2523.	5.9	34
30	ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in <i>Arabidopsis</i> . Molecular Biology of the Cell, 2012, 23, 1558-1568.	2.1	23
31	Blunt-ended telomeres: an alternative ending to the replication and end protection stories. Genes and Development, 2012, 26, 1648-1652.	5.9	16
32	Evolution of the Arabidopsis telomerase RNA. Frontiers in Genetics, 2012, 3, 188.	2.3	19
33	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	12.6	794
34	Parameters Affecting Telomere-Mediated Chromosomal Truncation in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 2263-2272.	6.6	43
35	Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 73-78.	7.1	66
36	Protection of Telomeres 1 Is Required for Telomere Integrity in the Moss <i>Physcomitrella patens</i> Â. Plant Cell, 2010, 22, 1838-1848.	6.6	31

#	Article	IF	CITATIONS
37	Evolution of CST function in telomere maintenance. Cell Cycle, 2010, 9, 3177-3185.	2.6	140
38	POT1 proteins in green algae and land plants: DNA-binding properties and evidence of co-evolution with telomeric DNA. Nucleic Acids Research, 2009, 37, 7455-7467.	14.5	30
39	POT1â€independent singleâ€strand telomeric DNA binding activities in Brassicaceae. Plant Journal, 2009, 58, 1004-1015.	5.7	29
40	Conserved Telomere Maintenance Component 1 Interacts with STN1 and Maintains Chromosome Ends in Higher Eukaryotes. Molecular Cell, 2009, 36, 207-218.	9.7	260
41	The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996.	27.8	964
42	STN1 protects chromosome ends in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19815-19820.	7.1	86
43	<i>Arabidopsis</i> SMG7 protein is required for exit from meiosis. Journal of Cell Science, 2008, 121, 2208-2216.	2.0	84
44	Dyskerin Is a Component of the <i>Arabidopsis</i> Telomerase RNP Required for Telomere Maintenance. Molecular and Cellular Biology, 2008, 28, 2332-2341.	2.3	68
45	Telomere Rapid Deletion Regulates Telomere Length in <i>Arabidopsis thaliana</i> . Molecular and Cellular Biology, 2007, 27, 1706-1715.	2.3	52
46	Telomere dynamics and fusion of critically shortened telomeres in plants lacking DNA ligase IV. Nucleic Acids Research, 2007, 35, 6490-6500.	14.5	66
47	ATM regulates the length of individual telomere tracts in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18145-18150.	7.1	22
48	Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO Journal, 2007, 26, 3653-3661.	7.8	88
49	The Role of the Nonhomologous End-Joining DNA Double-Strand Break Repair Pathway in Telomere Biology. Annual Review of Genetics, 2006, 40, 237-277.	7.6	103
50	Telomeraseâ€independent cell survival in <i>Arabidopsis thaliana</i> . Plant Journal, 2005, 43, 662-674.	5.7	20
51	The <i>Arabidopsis</i> Pot1 and Pot2 Proteins Function in Telomere Length Homeostasis and Chromosome End Protection. Molecular and Cellular Biology, 2005, 25, 7725-7733.	2.3	113
52	ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes and Development, 2005, 19, 2111-2115.	5.9	50
53	Length Regulation and Dynamics of Individual Telomere Tracts in Wild-Type Arabidopsis. Plant Cell, 2004, 16, 1959-1967.	6.6	100
54	Plant Telomere Biology. Plant Cell, 2004, 16, 794-803.	6.6	53

4

#	Article	IF	CITATIONS
55	A C-terminal Myb Extension Domain Defines a Novel Family of Double-strand Telomeric DNA-binding Proteins in Arabidopsis. Journal of Biological Chemistry, 2004, 279, 47799-47807.	3.4	77
56	Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO Journal, 2004, 23, 2304-2313.	7.8	181
57	TELOMERASE ACTIVATOR1 Induces Telomerase Activity and Potentiates Responses to Auxin in Arabidopsis. Plant Cell, 2004, 16, 2910-2922.	6.6	43
58	Telomere structure, function and maintenance in Arabidopsis. Chromosome Research, 2003, 11, 263-275.	2.2	48
59	Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma, 2003, 112, 116-123.	2.2	61
60	Surprise ending. Nature Genetics, 2003, 33, 114-116.	21.4	8
61	Developmentally Programmed Gene Elimination in Euplotes crassus Facilitates a Switch in the Telomerase Catalytic Subunit. Cell, 2003, 113, 565-576.	28.9	41
62	Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 611-615.	7.1	95
63	Oligomerization of the telomerase reverse transcriptase from Euplotes crassus. Nucleic Acids Research, 2002, 30, 4032-4039.	14.5	28
64	Interactions between Telomerase and Primase Physically Link the Telomere and Chromosome Replication Machinery. Molecular and Cellular Biology, 2002, 22, 5859-5868.	2.3	45
65	Telomeres, telomerase, and stability of the plant genome. Plant Molecular Biology, 2002, 48, 331-337.	3.9	58
66	Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO Journal, 2002, 21, 2819-2826.	7.8	200
67	Different modes of <i>de novo</i> telomere formation by plant telomerases. Plant Journal, 2001, 26, 77-87.	5.7	26
68	Living with Genome Instability: Plant Responses to Telomere Dysfunction. Science, 2001, 291, 1797-1800.	12.6	206
69	Analysis of the Gâ€overhang structures on plant telomeres: evidence for two distinct telomere architectures. Plant Journal, 2000, 23, 633-641.	5.7	65
70	Telomerase Enzyme Activity as a Diagnostic Tool to Distinguish Effusions of Malignant and Benign Origin. Journal of Veterinary Internal Medicine, 2000, 14, 146-150.	1.6	8
71	Telomeres, telomerase and plant development. Trends in Plant Science, 1998, 3, 126-130.	8.8	30
72	Reiterative dG addition by Euplotes crassus telomerase during extension of non-telomeric DNA. Nucleic Acids Research, 1998, 26, 3998-4004.	14.5	8

#	Article	IF	CITATIONS
73	Flexible Positioning of the Telomerase-Associated Nuclease Leads to Preferential Elimination of Nontelomeric DNA. Molecular and Cellular Biology, 1998, 18, 1544-1552.	2.3	21
74	Developmentally regulated initiation of DNA synthesis by telomerase: evidence for factor-assistedde novotelomere formation. EMBO Journal, 1997, 16, 2507-2518.	7.8	44
75	Chromosome healing: Spontaneous and programmed <i>de novo</i> telomere formation by telomerase. BioEssays, 1996, 18, 301-308.	2.5	83
76	Sequence of the macronuclear DNA encoding large subunit ribosomal protein 29 (L29) in Euplotes crassus and cycloheximide sensitivity. Gene, 1994, 151, 231-235.	2.2	10
77	Telomeres and telomerases. Current Opinion in Genetics and Development, 1993, 3, 759-763.	3.3	31