Darren E Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7449986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cutting Edge: NOX2 NADPH Oxidase Controls Infection by an Intracellular Bacterial Pathogen through Limiting the Type 1 IFN Response. Journal of Immunology, 2021, 206, 323-328.	0.8	5
2	Sticholysins, pore-forming proteins from a marine anemone can induce maturation of dendritic cells through a TLR4 dependent-pathway. Molecular Immunology, 2021, 131, 144-154.	2.2	4
3	Listeria exploits IFITM3 to suppress antibacterial activity in phagocytes. Nature Communications, 2021, 12, 4999.	12.8	11
4	Characterization of the pathogenesis and immune response to Listeria monocytogenes strains isolated from a sustained national outbreak. Scientific Reports, 2019, 9, 19587.	3.3	18
5	Invasion of the Brain by <i>Listeria monocytogenes</i> Is Mediated by InIF and Host Cell Vimentin. MBio, 2018, 9, .	4.1	72
6	The VirAB ABC Transporter Is Required for VirR Regulation of Listeria monocytogenes Virulence and Resistance to Nisin. Infection and Immunity, 2018, 86, .	2.2	38
7	The Vacuolar Pathway in Macrophages Plays a Major Role in Antigen Cross-Presentation Induced by the Pore-Forming Protein Sticholysin II Encapsulated Into Liposomes. Frontiers in Immunology, 2018, 9, 2473.	4.8	20
8	An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nature Microbiology, 2018, 3, 1472-1485.	13.3	57
9	Novel Adjuvant Based on the Pore-Forming Protein Sticholysin II Encapsulated into Liposomes Effectively Enhances the Antigen-Specific CTL-Mediated Immune Response. Journal of Immunology, 2017, 198, 2772-2784.	0.8	23
10	Deciphering the landscape of host barriers to <i>Listeria monocytogenes</i> infection. Proceedings of the United States of America, 2017, 114, 6334-6339.	7.1	68
11	Type I interferon promotes cell-to-cell spread ofListeria monocytogenes. Cellular Microbiology, 2017, 19, e12660.	2.1	27
12	The Diaphanous-Related Formins Promote Protrusion Formation and Cell-to-Cell Spread of <i>Listeria monocytogenes</i> . Journal of Infectious Diseases, 2015, 211, 1185-1195.	4.0	49
13	Resolution of Chlamydia trachomatis Infection Is Associated with a Distinct T Cell Response Profile. Vaccine Journal, 2015, 22, 1206-1218.	3.1	20
14	Strain-Specific Interactions of Listeria monocytogenes with the Autophagy System in Host Cells. PLoS ONE, 2015, 10, e0125856.	2.5	10
15	Identification of Listeria monocytogenes Determinants Required for Biofilm Formation. PLoS ONE, 2014, 9, e113696.	2.5	48
16	Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature, 2014, 509, 230-234.	27.8	118
17	A Differential Fluorescence-Based Genetic Screen Identifies Listeria monocytogenes Determinants Required for Intracellular Replication. Journal of Bacteriology, 2013, 195, 3331-3340.	2.2	11
18	Interactions of Listeria monocytogenes with the Autophagy System of Host Cells. Advances in Immunology, 2012, 113, 7-18.	2.2	28

DARREN E HIGGINS

#	Article	IF	CITATIONS
19	Listeriolysin O Suppresses Phospholipase C-Mediated Activation of the Microbicidal NADPH Oxidase to Promote Listeria monocytogenes Infection. Cell Host and Microbe, 2011, 10, 627-634.	11.0	72
20	A Protein Thermometer Controls Temperature-Dependent Transcription of Flagellar Motility Genes in Listeria monocytogenes. PLoS Pathogens, 2011, 7, e1002153.	4.7	81
21	Inhibition of Listeria monocytogenes infection by neurological drugs. International Journal of Antimicrobial Agents, 2010, 35, 292-296.	2.5	24
22	A Small-Molecule Screen Identifies the Antipsychotic Drug Pimozide as an Inhibitor of <i>Listeria monocytogenes</i> Infection. Antimicrobial Agents and Chemotherapy, 2009, 53, 756-764.	3.2	41
23	Recognition of AT-Rich DNA Binding Sites by the MogR Repressor. Structure, 2009, 17, 769-777.	3.3	33
24	Transcriptional and postâ€ŧranscriptional regulation of the GmaR antirepressor governs temperatureâ€dependent control of flagellar motility in <i>Listeria monocytogenes</i> . Molecular Microbiology, 2009, 74, 421-435.	2.5	43
25	Perturbation of vacuolar maturation promotes listeriolysin O-independent vacuolar escape during <i>Listeria monocytogenes</i> infection of human cells. Cellular Microbiology, 2009, 11, 1382-1398.	2.1	33
26	Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature, 2008, 451, 350-354.	27.8	273
27	Inhibition of ROCK activity allows InlFâ€mediated invasion and increased virulence of <i>Listeria monocytogenes</i> . Molecular Microbiology, 2008, 68, 749-767.	2.5	39
28	Influence of virulence attenuation on the efficacy of Listeria monocytogenes as a vaccine vector for stimulating antiâ€ŧumor immunity. FASEB Journal, 2008, 22, 1077.12.	0.5	0
29	Flagellar Motility Is Critical for Listeria monocytogenes Biofilm Formation. Journal of Bacteriology, 2007, 189, 4418-4424.	2.2	385
30	<i>Listeria monocytogenes</i> Evades Killing by Autophagy During Colonization of Host Cells. Autophagy, 2007, 3, 442-451.	9.1	229
31	Genomic approaches to understanding bacterial virulence. Current Opinion in Microbiology, 2007, 10, 4-9.	5.1	25
32	Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cellular Microbiology, 2007, 9, 179-195.	2.1	107
33	Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cellular Microbiology, 2006, 8, 107-119.	2.1	117
34	The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes. PLoS Pathogens, 2006, 2, e30.	4.7	96
35	A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes and Development, 2006, 20, 3283-3295.	5.9	107
36	The 5′ untranslated region-mediated enhancement of intracellular listeriolysin O production is required forListeria monocytogenespathogenicity. Molecular Microbiology, 2005, 57, 1460-1473.	2.5	95

DARREN E HIGGINS

#	Article	IF	CITATIONS
37	Genome-Wide RNAi Screen for Host Factors Required for Intracellular Bacterial Infection. Science, 2005, 309, 1248-1251.	12.6	282
38	Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12318-12323.	7.1	201
39	Requirement of the Listeria monocytogenes Broad-Range Phospholipase PC-PLC during Infection of Human Epithelial Cells. Journal of Bacteriology, 2003, 185, 6295-6307.	2.2	119
40	Inducible Control of Virulence Gene Expression in Listeria monocytogenes : Temporal Requirement of Listeriolysin O during Intracellular Infection. Journal of Bacteriology, 2002, 184, 5935-5945.	2.2	59
41	Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Molecular Microbiology, 1999, 31, 1631-1641.	2.5	74