## Corneliu Porosnicu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7449473/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.                                                                                                    | 3.5  | 150       |
| 2  | Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.              | 3.5  | 75        |
| 3  | Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.                                                           | 16.7 | 73        |
| 4  | Efficiency of thermal outgassing for tritium retention measurement and removal in ITER. Nuclear<br>Materials and Energy, 2017, 12, 267-272.                                          | 1.3  | 63        |
| 5  | Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach. Applied Surface Science, 2017, 424, 397-406.                                                      | 6.1  | 52        |
| 6  | Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering.<br>Surface and Coatings Technology, 2019, 359, 97-107.                           | 4.8  | 50        |
| 7  | Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns.<br>Nuclear Fusion, 2019, 59, 086009.                                            | 3.5  | 45        |
| 8  | Ceramic materials Ba(1â^'x)SrxTiO3 for electronics — Synthesis and characterization. Thin Solid Films, 2008, 516, 8210-8214.                                                         | 1.8  | 37        |
| 9  | Plasma–wall interactions with nitrogen seeding in all-metal fusion devices: Formation of nitrides and ammonia. Fusion Engineering and Design, 2015, 98-99, 1371-1374.                | 1.9  | 33        |
| 10 | Determination of deuterium depth profiles in fusion-relevant wall materials by nanosecond LIBS.<br>Nuclear Materials and Energy, 2017, 12, 611-616.                                  | 1.3  | 33        |
| 11 | Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications.<br>Applied Surface Science, 2017, 416, 878-884.                                     | 6.1  | 31        |
| 12 | Consequences of deuterium retention and release from Be-containing mixed materials for ITER Tritium<br>Inventory Control. Journal of Nuclear Materials, 2011, 415, S731-S734.        | 2.7  | 29        |
| 13 | Fuel inventory and deposition in castellated structures in JET-ILW. Nuclear Fusion, 2017, 57, 066027.                                                                                | 3.5  | 25        |
| 14 | Structural and optical properties of optimized amorphous GeTe films for memory applications.<br>Journal of Non-Crystalline Solids, 2018, 499, 1-7.                                   | 3.1  | 25        |
| 15 | Development of laser-induced breakdown spectroscopy for analyzing deposited layers in ITER. Physica<br>Scripta, 2014, T159, 014067.                                                  | 2.5  | 21        |
| 16 | Thermal and chemical stability of the β-W2N nitride phase. Nuclear Materials and Energy, 2017, 12,<br>462-467.                                                                       | 1.3  | 20        |
| 17 | Identification of BeO and BeOxDy in melted zones of the JET Be limiter tiles: Raman study using comparison with laboratory samples. Nuclear Materials and Energy, 2018, 17, 295-301. | 1.3  | 20        |
| 18 | Simultaneous carbon and tungsten thin film deposition using two thermionic vacuum arcs. Thin Solid Films, 2011, 519, 4074-4077                                                       | 1.8  | 19        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Experience of handling beryllium, tritium and activated components from JET ITER like wall. Physica Scripta, 2016, T167, 014057.                                                                 | 2.5 | 18        |
| 20 | Beryllium-tungsten study on mixed layers obtained by m-HiPIMS/DCMS techniques in a deuterium and nitrogen reactive gas mixture. Surface and Coatings Technology, 2017, 321, 397-402.             | 4.8 | 17        |
| 21 | Investigation and plasma cleaning of first mirrors coated with relevant ITER contaminants: beryllium and tungsten. Nuclear Fusion, 2017, 57, 086019.                                             | 3.5 | 17        |
| 22 | HiPIMS deposition of silicon nitride for solar cell application. Surface and Coatings Technology, 2018, 344, 197-203.                                                                            | 4.8 | 17        |
| 23 | Adhesive force distributions for tungsten dust deposited on bulk tungsten and beryllium-coated tungsten surfaces. Nuclear Materials and Energy, 2018, 15, 55-63.                                 | 1.3 | 17        |
| 24 | Influence of beryllium carbide formation on deuterium retention and release. Journal of Nuclear<br>Materials, 2011, 415, S713-S716.                                                              | 2.7 | 16        |
| 25 | Study of deuterium retention in/release from ITER-relevant Be-containing mixed material layers implanted at elevated temperatures. Journal of Nuclear Materials, 2013, 438, S1113-S1116.         | 2.7 | 16        |
| 26 | Temperature influence on deuterium retention for Be–W mixed thin films prepared by Thermionic<br>Vacuum Arc method exposed to PISCES B plasma. Journal of Nuclear Materials, 2015, 463, 983-988. | 2.7 | 15        |
| 27 | Investigation of deuterium retention in/desorption from beryllium-containing mixed layers. Nuclear<br>Materials and Energy, 2016, 6, 1-9.                                                        | 1.3 | 15        |
| 28 | Laser-Induced Desorption of co-deposited Deuterium in Beryllium Layers on Tungsten. Nuclear<br>Materials and Energy, 2019, 19, 503-509.                                                          | 1.3 | 15        |
| 29 | Quantification of H/D content in Be/W mixtures coatings by CF-LIBS. Physica Scripta, 2020, 2020, 014073.                                                                                         | 2.5 | 15        |
| 30 | Influence of the bias voltage on the formation of beryllium films by a thermionic vacuum arc method.<br>Journal of Nuclear Materials, 2009, 385, 242-245.                                        | 2.7 | 14        |
| 31 | The behavior of W, Be and C layers in interaction with plasma produced by terawatt laser beam pulses.<br>Vacuum, 2014, 110, 207-212.                                                             | 3.5 | 14        |
| 32 | The 9Be(p,p0)9Be, 9Be(p,d0)8Be, and 9Be(p,α0)6Li cross-sections for analytical purposes. Nuclear<br>Instruments & Methods in Physics Research B, 2015, 358, 72-81.                               | 1.4 | 14        |
| 33 | Raman microscopy investigation of beryllium materials. Physica Scripta, 2016, T167, 014027.                                                                                                      | 2.5 | 14        |
| 34 | Influence of gaseous environments on beryllium–tungsten and tungsten surfaces investigated by XPS.<br>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .        | 2.1 | 12        |
| 35 | Effect of composition and surface characteristics on fuel retention in beryllium-containing co-deposited layers. Physica Scripta, 2020, T171, 014038.                                            | 2.5 | 12        |
| 36 | Formation and delamination of beryllium carbide films. Journal of Nuclear Materials, 2013, 442, S320-S324.                                                                                       | 2.7 | 11        |

Corneliu Porosnicu

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combinatorial Fe–Co thin film magnetic structures obtained by thermionic vacuum arc method.<br>Surface and Coatings Technology, 2014, 240, 344-352.                                                     | 4.8 | 11        |
| 38 | The Properties of Binary and Ternary Ti Based Coatings Produced by Thermionic Vacuum Arc (TVA)<br>Technology. Coatings, 2018, 8, 114.                                                                   | 2.6 | 11        |
| 39 | CF-LIBS quantification and depth profile analysis of Be coating mixed layers. Nuclear Materials and Energy, 2021, 27, 100990.                                                                           | 1.3 | 11        |
| 40 | Efficiency of laser-induced desorption of D from Be/D layers and surface modifications due to LID.<br>Physica Scripta, 2020, T171, 014075.                                                              | 2.5 | 11        |
| 41 | Interface characterization and atomic intermixing processes in Be/W bilayers deposited on Si(001) substrates with Fe buffer layers. Journal of Alloys and Compounds, 2012, 512, 199-206.                | 5.5 | 10        |
| 42 | Preparing the future post-mortem analysis of beryllium-based JET and ITER samples by<br>multi-wavelengths Raman spectroscopy on implanted Be, and co-deposited Be. Nuclear Fusion, 2017, 57,<br>076035. | 3.5 | 10        |
| 43 | Quartz micro-balance and in situ XPS study of the adsorption and decomposition of ammonia on gold, tungsten, boron, beryllium and stainless steel surfaces. Nuclear Fusion, 2018, 58, 106012.           | 3.5 | 10        |
| 44 | Influence of thermal treatment on beryllium/carbon formation and fuel retention. Journal of Nuclear<br>Materials, 2011, 416, 9-12.                                                                      | 2.7 | 9         |
| 45 | Dependence of LIBS spectra on the surface composition and morphology of W/Al coatings. Fusion Engineering and Design, 2017, 121, 296-300.                                                               | 1.9 | 9         |
| 46 | Negative ion-induced deuterium retention in mixed W-Al layers co-deposited in dual-HiPIMS. Surface and Coatings Technology, 2019, 363, 273-281.                                                         | 4.8 | 8         |
| 47 | Characterization of tungsten films and their hydrogen permeability. Journal of Vacuum Science and<br>Technology A: Vacuum, Surfaces and Films, 2014, 32, 061511.                                        | 2.1 | 7         |
| 48 | Study of deuterium retention in Be-W coatings with distinct roughness profiles. Fusion Engineering and Design, 2017, 124, 464-467.                                                                      | 1.9 | 7         |
| 49 | The influence of fusion-relevant D2-0.1He plasma on Be-W mixed-materials. Journal of Nuclear<br>Materials, 2017, 484, 367-373.                                                                          | 2.7 | 7         |
| 50 | Beryllium thin films deposited by thermionic vacuum arc for nuclear applications. Applied Surface<br>Science, 2019, 481, 327-336.                                                                       | 6.1 | 7         |
| 51 | Fuel retention and erosion-deposition on inner wall cladding tiles in JET-ILW. Physica Scripta, 2021, 96, 124071.                                                                                       | 2.5 | 7         |
| 52 | Surface morphology influence on deuterium retention in beryllium films prepared by thermionic vacuum arc method. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 426-429.               | 1.4 | 6         |
| 53 | Nanodiamond crystallites embedded in carbon films prepared by thermionic vacuum arc method.<br>Diamond and Related Materials, 2011, 20, 1061-1064.                                                      | 3.9 | 6         |
| 54 | Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method.<br>Journal of Nanophotonics, 2014, 8, 083996.                                                         | 1.0 | 6         |

CORNELIU POROSNICU

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydrogen permeability through beryllium films and the impact of surface oxides. Journal of Nuclear<br>Materials, 2013, 443, 185-194.                                       | 2.7 | 5         |
| 56 | Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation.<br>Applied Physics Letters, 2014, 104, 101604.                           | 3.3 | 5         |
| 57 | Interaction of nitrogen ions with beryllium surfaces. Nuclear Instruments & Methods in Physics<br>Research B, 2014, 340, 34-38.                                            | 1.4 | 5         |
| 58 | Structure, morphology and deuterium retention and release properties of pure and mixed Be and W<br>layers. Journal Physics D: Applied Physics, 2020, 53, 325304.           | 2.8 | 5         |
| 59 | Carbon–Tungsten Thin-Film Deposition by a Dual Thermionic Vacuum Arc. IEEE Transactions on Plasma<br>Science, 2012, 40, 3546-3551.                                         | 1.3 | 4         |
| 60 | Laser irradiation of carbon–tungsten materials. Journal Physics D: Applied Physics, 2014, 47, 355305.                                                                      | 2.8 | 4         |
| 61 | The influence of nitrogen co-deposition in mixed layers on deuterium retention and thermal desorption. Journal of Nuclear Materials, 2015, 467, 472-479.                   | 2.7 | 4         |
| 62 | Stability of beryllium coatings deposited on carbon under annealing up to 1073 K. Fusion Engineering<br>and Design, 2019, 146, 303-307.                                    | 1.9 | 4         |
| 63 | Deuterium inventory determination in beryllium and mixed beryllium-carbon layers doped with oxygen. Fusion Engineering and Design, 2020, 150, 111365.                      | 1.9 | 4         |
| 64 | Hydrogen permeability of beryllium films prepared by the thermionic vacuum arc method. Fusion<br>Engineering and Design, 2011, 86, 2421-2424.                              | 1.9 | 3         |
| 65 | Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation.<br>Applied Surface Science, 2015, 355, 477-483.                          | 6.1 | 3         |
| 66 | Effects of annealing in Be/W and Be/C bilayers deposited on Si(0 0 1) substrates with Fe buffer layers.<br>Journal of Nuclear Materials, 2015, 457, 220-226.               | 2.7 | 3         |
| 67 | Carbon–titanium nanostructures: synthesis and characterization. Physica Scripta, 2020, 95, 044012.                                                                         | 2.5 | 3         |
| 68 | Deuterium Retention and Release Behavior from Beryllium Co-Deposited Layers at Distinct Ar/D Ratio.<br>Coatings, 2021, 11, 1443.                                           | 2.6 | 3         |
| 69 | Deuterium plasma sputtering of mixed Be-W layers. Journal of Nuclear Materials, 2022, 564, 153671.                                                                         | 2.7 | 3         |
| 70 | Terawatt laser system irradiation of carbon/tungsten bilayers. Physica Status Solidi (A) Applications<br>and Materials Science, 2012, 209, 1732-1737.                      | 1.8 | 2         |
| 71 | The effect of the substrate temperature and the acceleration potential drop on the structural and physical properties of SiC thin films deposed by TVA method. , 2014, , . |     | 2         |
| 72 | Structural and electrical properties of N doped SiC nanostructures obtained by TVA method. , 2015, , .                                                                     |     | 2         |

5

Corneliu Porosnicu

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Be/W and W/Be bilayers deposited on Si substrates with hydrogenated Fe-Cr and Fe-Cr-Al interlayers for plasma facing components. Journal of Nuclear Materials, 2016, 481, 73-80.    | 2.7 | 2         |
| 74 | Significant change of local atomic configurations at surface of reduced activation Eurofer steels induced by hydrogenation treatments. Applied Surface Science, 2017, 402, 114-119. | 6.1 | 2         |
| 75 | Influence of gaseous inclusions on aluminum-tungsten coatings investigated by XPS. Journal of<br>Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .           | 2.1 | 2         |
| 76 | Analysis of retained deuterium on Be-based films: Ion implantation vs. in-situ loading. Nuclear<br>Materials and Energy, 2018, 17, 242-247.                                         | 1.3 | 2         |
| 77 | Structural, Compositional, and Mechanical Characterization of WxCryFe1â^'xâ^'y Layers Relevant to<br>Nuclear Fusion, Obtained with TVA Technology. Materials, 2019, 12, 4072.       | 2.9 | 2         |
| 78 | D retention and material defects probed using Raman microscopy in JET limiter samples and beryllium-based synthesized samples. Physica Scripta, 2021, 96, 124031.                   | 2.5 | 2         |
| 79 | lon energy distribution analysis of the TVA plasma ignited in carbon vapours using RFA. Journal of<br>Physics: Conference Series, 2010, 207, 012018.                                | 0.4 | 1         |
| 80 | Investigations of Buffer-Gases Role in Xenon and Halogen Excimer Mixtures. , 2010, , .                                                                                              |     | 1         |
| 81 | Electron microscopy characterization of some carbon based nanostructures with application in divertors coatings from fusion reactor. , 2011, , .                                    |     | 1         |
| 82 | Application of carbon-aluminum nanostructures in divertor coatings from fusion reactor. , 2012, , .                                                                                 |     | 1         |
| 83 | SiC multi-layer protective coating on carbon obtained by thermionic vacuum arc method. Proceedings of SPIE, 2013, , .                                                               | 0.8 | 1         |
| 84 | Pulsed Electrical Discharges in Silicone Emulsion. Plasma Processes and Polymers, 2014, 11, 214-221.                                                                                | 3.0 | 1         |
| 85 | DLC Thin Films and Carbon Nanocomposite Growth by Thermionic Vacuum Arc (TVA) Technology. , 2016, , .                                                                               |     | 1         |
| 86 | Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method. Proceedings of SPIE, 2016, , .                                                 | 0.8 | 1         |
| 87 | Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by thermionic vacuum arc (TVA) method. AIP Conference Proceedings, 2018, , .                        | 0.4 | 1         |
| 88 | Carbon-titanium multilayer films: Synthesis and characterization. AIP Conference Proceedings, 2018, , .                                                                             | 0.4 | 1         |
| 89 | Nanostructured carbon-titanium multilayer films obtained by thermionic vacuum arc method. , 2018, , .                                                                               |     | 1         |
| 90 | Deposition, Morphological, and Mechanical Evaluation of W and Be-Al2O3 and Er2O3 Co-Sputtered Films in Comparison with Pure Oxides. Coatings, 2021, 11, 1430.                       | 2.6 | 1         |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Deuterium Retention in Mixed Layers with Application in Fusion Technology. Coatings, 2022, 12, 951.                                                | 2.6 | 1         |
| 92 | OH Production Enhancement in Bubbling Pulsed Discharges. , 2010, , .                                                                               |     | 0         |
| 93 | Investigation of Composition-Properties' Relations on Silicon and Carbon Based Nanomaterials.<br>Advanced Materials Research, 0, 816-817, 232-236. | 0.3 | Ο         |
| 94 | Growth of mixed materials in the Be/W/O system in fusion devices. Microscopy and Microanalysis, 2015, 21, 94-95.                                   | 0.4 | 0         |
| 95 | Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by TVA method. , 2017, , .                                         |     | 0         |