Katsuya Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7449364/publications.pdf

Version: 2024-02-01

136950 128289 3,990 141 32 60 citations h-index g-index papers 146 146 146 3141 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Crystal structure of the superconducting phase of sulfur hydride. Nature Physics, 2016, 12, 835-838.	16.7	392
2	Superconductivity in compressed lithium at 20 K. Nature, 2002, 419, 597-599.	27.8	321
3	Superconductivity in the non-magnetic state of iron under pressure. Nature, 2001, 412, 316-318.	27.8	269
4	Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature, 2009, 458, 186-189.	27.8	228
5	Experimental determination of the electrical resistivity of iron at Earth's core conditions. Nature, 2016, 534, 95-98.	27.8	209
6	The Electrical Conductivity of Post-Perovskite in Earth's D'' Layer. Science, 2008, 320, 89-91.	12.6	127
7	Superconductivity of Ca Exceeding 25 K at Megabar Pressures. Journal of the Physical Society of Japan, 2006, 75, 083703.	1.6	119
8	Experimental and Theoretical Evidence for Pressure-Induced Metallization in FeO with Rocksalt-Type Structure. Physical Review Letters, 2012, 108, 026403.	7.8	111
9	Superconductivity of CeRhIn5 under High Pressure. Journal of the Physical Society of Japan, 2001, 70, 3362-3367.	1.6	98
10	Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. Physical Review B, 2011, 83, .	3.2	80
11	Phase boundary of hot dense fluid hydrogen. Scientific Reports, 2015, 5, 16560.	3.3	72
12	New High-Pressure Phase of Calcium. Journal of the Physical Society of Japan, 2005, 74, 2391-2392.	1.6	70
13	Pressure-induced Superconductivity in Elemental Materials. Journal of the Physical Society of Japan, 2005, 74, 1345-1357.	1.6	66
14	Superconducting phaseÂdiagram of H3S under high magnetic fields. Nature Communications, 2019, 10, 2522.	12.8	62
15	Observation of Pressure-Induced Superconductivity of Sulfur. Journal of the Physical Society of Japan, 1997, 66, 2564-2565.	1.6	59
16	Electrical conductivities of pyrolitic mantle and MORB materials up to the lowermost mantle conditions. Earth and Planetary Science Letters, 2010, 289, 497-502.	4.4	59
17	Superconductivity of Calcium under High Pressures. Journal of the Physical Society of Japan, 1996, 65, 1924-1926.	1.6	57
18	Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure. Scientific Reports, 2016, 6, 23160.	3.3	56

#	Article	IF	Citations
19	Multiferroicity in orthorhombicRMnO3(R=Dy,Tb, andGd) under high pressure. Physical Review B, 2015, 91, .	3.2	48
20	Crystal Structures of Calcium IV and V under High Pressure. Physical Review Letters, 2008, 101, 095503. Suppression of metal-insulator transition at high pressure and pressure-induced magnetic ordering in	7.8	47
21	pyrochlore oxide Nd <mml:math 1998="" http:="" math="" mathml"="" www.w3.org="" xmins:mmi="nttp://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td><td>3.2</td><td>47</td></tr><tr><td>22</td><td>Pressure-Induced Superconductivity in Antiferromagnet CePd<sub>5</sub>Al<sub>2</sub>. Journal of the Physical Society of Japan, 2008, 77, 043701.</td><td>1.6</td><td>42</td></tr><tr><td>23</td><td>Ca-VI: A high-pressure phase of calcium above 158 GPa. Physical Review B, 2010, 81, .</td><td>3.2</td><td>39</td></tr><tr><td>24</td><td>Superconductivity in room-temperature stable electride and high-pressure phases of alkali metals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140450.</td><td>3.4</td><td>39</td></tr><tr><td>25</td><td>Emergence of double-dome superconductivity in ammoniated metal-doped FeSe. Scientific Reports, 2015, 5, 9477.</td><td>3.3</td><td>39</td></tr><tr><td>26</td><td>Materials informatics based on evolutionary algorithms: Application to search for superconducting hydrogen compounds. Physical Review B, 2019, 100, .</td><td>3.2</td><td>39</td></tr><tr><td>27</td><td>xmlns:mml="><mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:mi>Mo</mml:mi><mml:msub><mr mathvariant="normal">H<mml:mn>11</mml:mn></mr></mml:msub></mml:mrow></mml:math>	nl:mi	39
28	under high pressure. Physical Review B, 2019, 99 Pressure-Induced Superconductivity in Filled Skutterudite PrRu4P12. Journal of the Physical Society of Japan, 2004, 73, 2370-2372.	1.6	38
29	Ca-VII: A Chain Ordered Host-Guest Structure of Calcium above 210ÂGPa. Physical Review Letters, 2013, 110, 235501.	7.8	38
30	Pressure-Induced Superconductivity of Iodine. Journal of the Physical Society of Japan, 1992, 61, 3853-3855.	1.6	36
31	Magnetic Properties of RCoGe ₃ (R: Ce, Pr, and Nd) and Strong Anisotropy of the Upper Critical Field in Non-centrosymmetric Compound CeCoGe ₃ . Journal of the Physical Society of Japan, 2009, 78, 124713.	1.6	35
32	Generation of Multi-Megabar Pressure Using Nano-Polycrystalline Diamond Anvils. Japanese Journal of Applied Physics, 2007, 46, L640-L641.	1.5	34
33	The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowuestite. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2007, 83, 97-100.	3.8	33
34	Superconductivity of Pure H ₃ S Synthesized from Elemental Sulfur and Hydrogen. Journal of the Physical Society of Japan, 2019, 88, 123701.	1.6	33
35	Pressure effects on the magnetoelectric properties of a multiferroic triangular-lattice antiferromagnet CuCrO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review B. 2013. 87	3.2	31
36	Electrical resistivity of CeTIn5 (T=Rh, Ir) under high pressure. Physica C: Superconductivity and Its Applications, 2003, 388-389, 539-540.	1.2	29

#	Article	IF	Citations
37	High-pressure experimental evidence for metal FeO with normal NiAs-type structure. Physical Review B, 2010, 82, .	3.2	29
38	The electrical resistance measurements of (Mg,Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron. Physics of the Earth and Planetary Interiors, 2010, 180, 154-158.	1.9	28
39	On the phase-transition in anthracene induced by high pressure. Solid State Communications, 2004, 129, 103-106.	1.9	27
40	Pressure-induced superconductivity in non-centrosymmetric compound CelrGe3. Physica C: Superconductivity and Its Applications, 2010, 470, S543-S544.	1.2	27
41	Enhancement of Superconducting Transition Temperature in CeCu2Ge2under High Pressures. Journal of the Physical Society of Japan, 1998, 67, 996-999.	1.6	26
42	Compression of polyhedral graphite up to 43 GPa and x-ray diffraction study on elasticity and stability of the graphite phase. Applied Physics Letters, 2004, 84, 5112-5114.	3.3	26
43	Superconductivity in aromatic hydrocarbons. Physica C: Superconductivity and Its Applications, 2015, 514, 199-205.	1.2	25
44	First-Principles Study on Superconductivity of P- and Cl-Doped H ₃ S. Journal of the Physical Society of Japan, 2018, 87, 124711.	1.6	25
45	Pressure-Induced Valence Transition and Heavy Fermion State in Eu2Ni3Ge5 and EuRhSi3. Journal of the Physical Society of Japan, 2015, 84, 053701.	1.6	24
46	Superconductivity of platinum hydride. Physical Review B, 2019, 99, .	3.2	23
47	Pressure-induced superconductivity of iodanil. European Physical Journal D, 1996, 46, 817-818.	0.4	19
48	Valence ordering in the intermediate-valence magnet YbPd. Physical Review B, 2013, 88, .	3.2	19
49	Pressure-induced superconducting state in crystalline boron nanowires. Physical Review B, 2009, 79, .	3.2	18
50	Superconductivity in α-boron at Mbar pressure. Physica C: Superconductivity and Its Applications, 2010, 470, S631-S632.	1.2	18
51	Hall Effect of Iodine in High Pressure. Journal of the Physical Society of Japan, 1994, 63, 3207-3209.	1.6	17
52	Pressure-induced phase transition, metallization, and superconductivity in boron triiodide. Physical Review B, 2010, 82, .	3.2	17
53	Cryogenic implementation of charging diamond anvil cells with H2 and D2. Review of Scientific Instruments, 2011, 82, 105109.	1.3	16
54	Origin of Pressure-induced Superconducting Phase in KxFe2â^'ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy. Scientific Reports, 2016, 6, 30946.	3.3	16

#	Article	IF	CITATIONS
55	Pressure-Induced Superconductivity of SnI4. Journal of the Physical Society of Japan, 1996, 65, 3400-3401.	1.6	15
56	Pressure-induced stacking sequence variations in gold from first principles. Physical Review B, 2013, 88, .	3.2	15
57	Strong enhancement of superconductivity in inorganic electride 12CaO·7Al2O3:eâ^' under high pressure. Journal of the Korean Physical Society, 2013, 63, 477-480.	0.7	15
58	Measurement of Electrical Resistance and Raman Spectrum of α-Boron under High Pressure. Journal of the Physical Society of Japan, 2007, 76, 19-20.	1.6	14
59	Superconductivity from insulating elements under high pressure. Physica C: Superconductivity and Its Applications, 2015, 514, 46-49.	1.2	14
60	Pressure-induced polyamorphism in a main-group metallic glass. Physical Review B, 2016, 94, .	3.2	14
61	Two-year progress in experimental investigation on high-temperature superconductivity of sulfur hydride. Japanese Journal of Applied Physics, 2017, 56, 05FA13.	1.5	14
62	Electrical Resistance Measurement of Oxygen under High Pressure. Journal of the Physical Society of Japan, 1996, 65, 1527-1528.	1.6	13
63	Dielectric and AC-Calorimetry Measurements of SmMnO ₃ under High Pressure. Journal of the Physical Society of Japan, 2012, 81, SB036.	1.6	13
64	Crystal Structure and Electrical Property of Calcium under Very High Pressure. Journal of the Physical Society of Japan, 2007, 76, 25-26.	1.6	12
65	Fabrication of new superconducting materials, CaxK1â^'xCy (0Â<ÂxÂ<Â1). Carbon, 2016, 100, 641-646.	10.3	12
66	Appearance of Pressure-Induced Magnetic Phase in $\hat{l}\pm$ -Manganese. Journal of the Physical Society of Japan, 2008, 77, 025001.	1.6	11
67	Superconducting elements under high pressure. Physica C: Superconductivity and Its Applications, 2018, 552, 30-33.	1.2	11
68	Superconductivity of lanthanum hydride synthesized using AlH ₃ as a hydrogen source. Superconductor Science and Technology, 2020, 33, 114004.	3.5	11
69	Pressure-induced insulator-to-metal transition and superconductivity in iodanil, C6I4O2. Physica B: Condensed Matter, 2001, 304, 6-11.	2.7	10
70	Phase with pressure-induced shuttlewise deformation in dense solid atomic hydrogen. Physical Review B, 2014, 90, .	3.2	10
71	Collapse of CuO Double Chains and Suppression of Superconductivity in High-Pressure Phase of YBa ₂ Cu ₄ O ₈ . Journal of the Physical Society of Japan, 2014, 83, 093601.	1.6	10
72	Superconductivity and structural studies of highly compressed hydrogen sulfide. Physica C: Superconductivity and Its Applications, 2018, 552, 27-29.	1.2	10

#	Article	IF	CITATIONS
73	Superconductivity from magnetic elements under high pressure. Physica B: Condensed Matter, 2006, 378-380, 632-635.	2.7	9
74	Structural and electrical transport properties of FeH _{<i>x</i>} under high pressures and low temperatures. High Pressure Research, 2011, 31, 64-67.	1.2	9
75	Pressure-Induced Metallization of Yttrium Trihydride, YH3. Journal of the Physical Society of Japan, 2012, 81, SB041.	1.6	9
76	Interplay between Charge and Magnetic Orderings in YbPd. Journal of the Physical Society of Japan, 2013, 82, 084706.	1.6	9
77	Magnetic - nonmagnetic transition of U ₃ P ₄ at high pressures. Journal of Nuclear Science and Technology, 2002, 39, 191-194.	1.3	8
78	New superconductors under very high pressure. Journal of Physics Condensed Matter, 2007, 19, 125207.	1.8	8
79	Superconducting and Martensitic Transitions of V ₃ Si and Nb ₃ Sn under High Pressure. Journal of the Physical Society of Japan, 2012, 81, SB026.	1.6	8
80	Development of the Valence Fluctuation in the Nearly Divalent Compound YbCu ₂ Ge ₂ under High Pressure. Journal of the Physical Society of Japan, 2012, 81, SB054.	1.6	8
81	Investigation of Superconductivity in Hydrogen-rich Systems. Journal of the Physical Society of Japan, 2020, 89, 051005.	1.6	8
82	Electrical Properties of YH3under High Pressure. Journal of the Physical Society of Japan, 2007, 76, 86-87.	1.6	7
83	Pressure investigation of superconductivity of V ₃ Si. Journal of Physics: Conference Series, 2010, 200, 012202.	0.4	7
84	Review on distorted face-centered cubic phase in yttrium via genetic algorithm. High Pressure Research, 2015, 35, 37-41.	1.2	7
85	Chemical Trend of Superconducting Critical Temperatures in Hole-Doped CuBO ₂ , CuAlO ₂ , CuGaO ₂ , and CuInO ₂ . Journal of the Physical Society of Japan, 2016, 85, 094711.	1.6	7
86	Lithium polyhydrides synthesized under high pressure and high temperature. Journal of Raman Spectroscopy, 2017, 48, 1222-1228.	2.5	7
87	Electrical transport measurements for superconducting sulfur hydrides using boron-doped diamond electrodes on beveled diamond anvil. Superconductor Science and Technology, 2020, 33, 124005.	3.5	7
88	Pressure Dependence of the Superconductivity in Strontium. Journal of the Physical Society of Japan, 2007, 76, 23-24.	1.6	6
89	First-principles study on superconductivity of simple cubic, modulated and simple hexagonal phases in phosphorus. High Pressure Research, 2012, 32, 3-10.	1.2	6
90	Phase Stability and Superconductivity of Compressed Argon–Hydrogen Compounds from First-Principles. Journal of the Physical Society of Japan, 2017, 86, 124711.	1.6	6

#	Article	lF	Citations
91	Conical support for double-stage diamond anvil apparatus. High Pressure Research, 2020, 40, 12-21.	1.2	6
92	The phase transition of PbHPO4. Physica B: Condensed Matter, 2005, 359-361, 1303-1305.	2.7	5
93	The phase transition of CuCrZrS4 at high pressure. Physica B: Condensed Matter, 2005, 359-361, 1213-1215.	2.7	5
94	Metallization of solid iodine in phase I: X-ray diffraction measurements, electrical resistance measurements, and <i>ab initio </i> calculations. High Pressure Research, 2013, 33, 186-190.	1.2	5
95	Preparation and characterization of a new graphite superconductor: Ca0.5Sr0.5C6. Scientific Reports, 2017, 7, 7436.	3.3	5
96	Specific heat and effect of pressure on the electrical resistivity of CePtGa single crystal. Physica B: Condensed Matter, 2000, 284-288, 1321-1322.	2.7	4
97	Pressure-induced metal-insulator transition of the mott insulator Ba2IrO4. Journal of the Korean Physical Society, 2013, 63, 349-351.	0.7	4
98	Pressure dependence of superconductive transition temperature on KxFe2-ySe2. Journal of Physics: Conference Series, 2015, 592, 012070.	0.4	4
99	Pressure-induced superconductivity in Li and Fe. Physica C: Superconductivity and Its Applications, 2004, 408-410, 750-753.	1.2	3
100	High-pressure effect on the electrical resistivity in and. Physica B: Condensed Matter, 2005, 359-361, 266-268.	2.7	3
101	Pressure-induced novel superconductivity and heavy fermion state in rare earth compounds. Journal of Physics: Conference Series, 2012, 400, 022028.	0.4	3
102	First-Principles Molecular Dynamics Simulation for Calcium under High-Pressure: Thermodynamic Effect on Simple Cubic Structure. Journal of the Physical Society of Japan, 2012, 81, 124601.	1.6	3
103	First-principles study on superconductivity of solid oxygen. High Pressure Research, 2012, 32, 457-463.	1.2	3
104	Superconductivity of compressed solid argon from first principles. Physical Review B, 2015, 91, .	3.2	3
105	Beryllium polyhydride <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Be</mml:mi><mml:m mathvariant="normal">H<mml:mn>8</mml:mn></mml:m </mml:msub><mml:msub><mml:mrow><mml:mo>(<</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math 	าก>4/ก ชา สไ:mo>	l:mn><ធា៣l:msub
106	Pressure-Induced Superconductivity of SnI4 Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 595-597.	0.0	3
107	Insulator-metal transition and crossover from negative to positive magnetoresistance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:nunder .<="" 105,="" 2022,="" b,="" high="" physical="" pressure.="" review="" td=""><td>nn32<td>าไ:เซเท></td></td></mml:nunder></mml:msub></mml:mrow></mml:math>	nn 32 <td>าไ:เซเท></td>	าไ:เซเท>
108	Observation of superconductivity of calcium under high pressures. European Physical Journal D, 1996, 46, 869-870.	0.4	2

#	Article	IF	CITATIONS
109	Crystal Structure of High-Pressure Phases V and VI of Potassium Dihydrogen Phosphate. Journal of the Physical Society of Japan, 2012, 81, 064706.	1.6	2
110	The Novel Phase Diagram of YbPd. Journal of Physics: Conference Series, 2012, 391, 012045.	0.4	2
111	Electrical resistance of SrFeO2 at ultra high pressure. Journal of Physics: Conference Series, 2015, 592, 012041.	0.4	2
112	Structural phase transition of potassium under high-pressure and low-temperature condition. Journal of Physics: Conference Series, 2017, 950, 042020.	0.4	2
113	Mixed-valence state and structure changes of EuH (xâ€=â€2 and 2†<†x†â‰â€ 3) under high-pressure H2 Journal of Alloys and Compounds, 2021, 865, 158637.	atmosphe	re,
114	Molecular Solid. Metallization and Superconductivity in Oxygen under High Pressure Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2000, 10, 194-199.	0.0	1
115	PRESSURE-INDUCED SUPERCONDUCTIVITY IN SYMPLE METALS. International Journal of Modern Physics B, 2005, 19, 259-261.	2.0	1
116	Sample dependence of superconductivity for $V < sub > 3 < / sub > 5$ under high pressure. Journal of Physics: Conference Series, 2011, 273, 012105.	0.4	1
117	First-principles molecular dynamics study on simple cubic calcium: comparison with simple cubic phosphorus. High Pressure Research, 2012, 32, 11-17.	1.2	1
118	First-principles study on superconductivity of the gold–indium alloy under high pressure. High Pressure Research, 2013, 33, 152-157.	1.2	1
119	Searching for Superconducting Hydrides —The Experimental Achievements—. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 268-280.	0.0	1
120	Hydrogen-Storing Salt NaCl(H ₂) Synthesized at High Pressure and High Temperature. Journal of Physical Chemistry C, 2019, 123, 25074-25080.	3.1	1
121	Surface structure on diamond foils generated by spatially nonuniform laser irradiation. Scientific Reports, 2020, 10, 9017.	3.3	1
122	Pressure-Induced Metallization of Molecular Crystal BI3. Journal of the Physical Society of Japan, 2007, 76, 33-34.	1.6	1
123	Electrical Resistance Measurement Techniques for Metal Hydrides under High-Pressure H2 Conditions & Description of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2011, 21, 190-196.	0.0	1
124	Introduction to DAC Techniques. Low Temperature Technique for DAC Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 8, 41-48.	0.0	1
125	Introduction to DAC Technique. II. Application of DAC for Exploring Superconductivity Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1999, 9, 293-299.	0.0	1
126	Superconductivity in Compressed Lithium at 20 K ChemInform, 2003, 34, no-no.	0.0	0

#	Article	IF	CITATIONS
127	Structural analysis of the filled skutterudite at high pressure and low temperature. Physica B: Condensed Matter, 2006, 378-380, 199-200.	2.7	0
128	Review of High-Pressure Induced Superconductivity in Single Elements. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2010, 20, 133-139.	0.0	0
129	(P,T) Phase Diagram of Clathrate Superconductor Ba24Ge100. Journal of Physics: Conference Series, 2011, 273, 012079.	0.4	0
130	Magnetic-field-induced ferroelectric polarization flop under pressure in TbMnO ₃ . Journal of Physics: Conference Series, 2015, 592, 012118.	0.4	0
131	Electronic Properties of Elements at Mbar Pressure and Low Temperature. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2017, 27, 144-148.	0.0	0
132	Recent Progress on High-Temperature Superconducting Sulfur Hydride. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 251-259.	0.0	0
133	Antiferromagnetism and Valence Fluctuation of EuCd 11 at High Pressure. , 2020, , .		0
134	15 years of Searching for Superconductivity under Ultra-high Pressure Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2002, 12, 315-322.	0.0	0
135	Pressure-Induced Superconductivity of the Filled Skutterudite. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2006, 16, 350-356.	0.0	0
136	Measurements of Electrical Conductivity of (Mg,Fe)SiO3 Post-Perovskite using Laser-Heated Diamond-Anvil Cell. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2008, 18, 260-266.	0.0	0
137	Observation of Superconductivity at Very High Pressure and Low Temperature -Pressure-Induced High Temperature Superconductivity of Calcium Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61, 399-401.	0.2	0
138	Experiments under Extreme Conditions of Very Low Temperature and Ultra High Pressure Using Diamond Anvil Cell Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1994, 3, 375-377.	0.0	0
139	Simultaneous Measurements of Dielectric Properties and AC Calorimetry under High Pressure with Using Diamond Anvil Cell. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2015, 25, 298-307.	0.0	0
140	Room Temperature Superconductivity: Exploration and Prospects by Material Science at Extreme Conditions. Journal of the Institute of Electrical Engineers of Japan, 2022, 142, 89-92.	0.0	0
141	Persistent Spin–Orbit Mott Insulating State in Highly Compressed Post-Perovskite CalrO ₃ . Journal of the Physical Society of Japan, 2022, 91, .	1.6	0