
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7448883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive insight into the biology of Rhizoctonia solani AG1-IA Kühn, the causal organism of the sheath blight disease of rice. Journal of Plant Pathology, 2022, 104, 79-98.	1.2	4
2	Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics. Molecules, 2022, 27, 1111.	3.8	5
3	Proteomics as a tool to understand the biology of agricultural crops. , 2022, , 107-122.		0
4	Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants– maintenance of structural individuality and functional blend. Advances in Redox Research, 2022, 5, 100039.	2.1	48
5	Trends in Summer-Time Tropospheric Ozone during COVID-19 Lockdown in Indian Cities Might Forecast a Higher Future Risk. Atmosphere, 2022, 13, 1115.	2.3	4
6	Estimating Total Energy Expenditure for Fire-Fighters during Large Scale Disaster Response Training Using a Tri-Axial Accelerometer. Nutrients, 2021, 13, 2789.	4.1	2
7	Molecular Mechanism for PACAP 38-Induced Neurite Outgrowth in PC12 Cells. Neural Plasticity, 2021, 2021, 1-12.	2.2	3
8	Correlation of Kinematics and Kinetics of Changing Sagittal Plane Body Position during Landing and the Risk of Non-Contact Anterior Cruciate Ligament Injury. Applied Sciences (Switzerland), 2021, 11, 7773.	2.5	1
9	An Integrated Approach for the Efficient Extraction and Solubilization of Rice Microsomal Membrane Proteins for High-Throughput Proteomics. Frontiers in Plant Science, 2021, 12, 723369.	3.6	6
10	Effect of PACAP on sweat secretion by immortalized human sweat gland cells. Peptides, 2021, 146, 170647.	2.4	1
11	Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. Frontiers in Plant Science, 2021, 12, 803603.	3.6	9
12	Ethylene mediated physiological response for in vitro development of salinity tolerant tomato. Journal of Plant Interactions, 2020, 15, 406-416.	2.1	5
13	Transcriptomics of Mature Rice (Oryza Sativa L. Koshihikari) Seed under Hot Conditions by DNA Microarray Analyses. Atmosphere, 2020, 11, 528.	2.3	5
14	In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells, 2020, 9, 1517.	4.1	19
15	Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach. Expert Review of Proteomics, 2019, 16, 795-804.	3.0	21
16	Towards identification of bioactive compounds in cold vacuum extracted double cherry blossom (Gosen-Sakura) leaves. Plant Signaling and Behavior, 2019, 14, e1644594.	2.4	2
17	Proteomics of Rice—Magnaporthe oryzae Interaction: What Have We Learned So Far?. Frontiers in Plant Science, 2019, 10, 1383.	3.6	42
18	Leptin in hippocampus mediates benefits of mild exercise by an antioxidant on neurogenesis and memory. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10988-10993.	7.1	51

#	Article	IF	CITATIONS
19	Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Scientific Reports, 2019, 9, 18361.	3.3	6
20	A Multiâ€Omics Analysis of <i>Glycine max</i> Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment. Proteomics, 2018, 18, e1700366.	2.2	38
21	Progress Toward Rice Seed OMICS in Low-Level Gamma Radiation Environment in litate Village, Fukushima. Journal of Heredity, 2018, 109, 206-211.	2.4	17
22	Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves. Plant Physiology and Biochemistry, 2018, 130, 173-180.	5.8	12
23	Effects of slope gradient on runoff from bare-fallow purple soil in China under natural rainfall conditions. Journal of Mountain Science, 2018, 15, 738-751.	2.0	13
24	Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity. Journal of Proteomics, 2017, 169, 202-214.	2.4	25
25	Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 371-386.	1.7	23
26	Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance. Journal of Proteomics, 2017, 169, 233-238.	2.4	92
27	Proteomics survey of Solanaceae family: Current status and challenges ahead. Journal of Proteomics, 2017, 169, 41-57.	2.4	65
28	Comparative secretome analysis of Colletotrichum falcatum identifies a cerato-platanin protein (EPL1) as a potential pathogen-associated molecular pattern (PAMP) inducing systemic resistance in sugarcane. Journal of Proteomics, 2017, 169, 2-20.	2.4	30
29	Common bean proteomics: Present status and future strategies. Journal of Proteomics, 2017, 169, 239-248.	2.4	41
30	InÂvitro secretomic analysis identifies putative pathogenicity-related proteins of Sporisorium scitamineum – The sugarcane smut fungus. Fungal Biology, 2017, 121, 199-211.	2.5	11
31	In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics, 2017, 169, 125-135.	2.4	61
32	Expect the Unexpected Enrichment of "Hidden Proteome―of Seeds and Tubers by Depletion of Storage Proteins. Frontiers in Plant Science, 2016, 7, 761.	3.6	8
33	An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits. Frontiers in Plant Science, 2016, 7, 994.	3.6	23
34	Proteomic analysis of a compatible interaction between sugarcane and <i>Sporisorium scitamineum</i> . Proteomics, 2016, 16, 1111-1122.	2.2	39
35	Astaxanthin supplementation enhances adult hippocampal neurogenesis and spatial memory in mice. Molecular Nutrition and Food Research, 2016, 60, 589-599.	3.3	37
36	Proteome data associated with the leaf senescence in Glycine max. Data in Brief, 2016, 9, 90-95.	1.0	4

#	Article	IF	CITATIONS
37	Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8. Genomics Data, 2016, 10, 38-50.	1.3	13
38	Methyl jasmonate elicits the biotransformation of geraniol stored as its glucose conjugate into methyl geranate in Achyranthes bidentata plant. Plant Physiology and Biochemistry, 2016, 109, 166-170.	5.8	5
39	Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. Journal of Proteomics, 2016, 148, 65-74.	2.4	30
40	Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach. Genomics Data, 2016, 8, 139-145.	1.3	0
41	DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse. Genomics Data, 2016, 7, 32-37.	1.3	2
42	Proteomic analysis of lipid body from the alkenoneâ€producing marine haptophyte alga <i>Tisochrysis lutea</i> . Proteomics, 2015, 15, 4145-4158.	2.2	28
43	Two-color Dye-swap DNA Microarray approach toward confident gene expression profiling in PMCAO mouse model for ischemia-related and PACAP38-influenced genes. Genomics Data, 2015, 3, 148-154.	1.3	12
44	Unraveling the seed endosperm proteome of the lotus (<i>Nelumbo nucifera</i> Gaertn.) utilizing 1DE and 2DE separation in conjunction with tandem mass spectrometry. Proteomics, 2015, 15, 1717-1735.	2.2	7
45	DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain. World Journal of Biological Chemistry, 2015, 6, 389.	4.3	5
46	Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo Nucifera Gaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome. Proteomes, 2015, 3, 184-235.	3.5	4
47	Unraveling the Rat Intestine, Spleen and Liver Genome-Wide Transcriptome after the Oral Administration of Lavender Oil by a Two-Color Dye-Swap DNA Microarray Approach. PLoS ONE, 2015, 10, e0129951.	2.5	10
48	Gamma-glutamyl cycle in plants: a bridge connecting the environment to the plant cell?. Frontiers in Plant Science, 2015, 6, 252.	3.6	32
49	Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Frontiers in Plant Science, 2015, 6, 352.	3.6	88
50	Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Frontiers in Plant Science, 2015, 6, 592.	3.6	30
51	Protamine sulfate precipitation method depletes abundant plant seed-storage proteins: A case study on legume plants. Proteomics, 2015, 15, 1760-1764.	2.2	25
52	Unraveling the Specific Ischemic Core and Penumbra Transcriptome in the Permanent Middle Cerebral Artery Occlusion Mouse Model Brain Treated with the Neuropeptide PACAP38. Microarrays (Basel,) Tj ETQq0 0 C) rgB 4 /Ove	erl ac k 10 Tf 5
53	Comparative investigation of seed coats of brown―versus yellowâ€colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics, 2015, 15, 1706-1716.	2.2	32

54Methyl jasmonate elicits the production of methyl (<i>E</i>)â€2â€hexenoate from (<i>Z</i>)â€2â€hexenol
<i>via</i></ti>542.84

#	Article	IF	CITATIONS
55	Time to dig deep into the plant proteome: a hunt for low-abundance proteins. Frontiers in Plant Science, 2015, 6, 22.	3.6	47
56	Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content. Journal of Agricultural and Food Chemistry, 2015, 63, 7134-7142.	5.2	22
57	Towards a common bean proteome atlas: looking at the current state of research and the need for a comprehensive proteome. Frontiers in Plant Science, 2015, 6, 201.	3.6	12
58	Abundant storage protein depletion from tuber proteins using ethanol precipitation method: Suitability to proteomics study. Proteomics, 2015, 15, 1765-1769.	2.2	17
59	2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at litate village, Fukushima. Plant Signaling and Behavior, 2015, 10, e1103406.	2.4	30
60	Peptide Separation Methodologies for In-depth Proteomics. Methods in Molecular Biology, 2015, 1242, 195-209.	0.9	0
61	Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus. PLoS ONE, 2015, 10, e0128720.	2.5	108
62	Hsp90 and ECM29 Are Important to Maintain the Integrity of Mammalian 26S Proteasome. Advances in Biological Chemistry, 2015, 05, 255-265.	0.6	2
63	Analyzing Waste Problems in Developing Countries: Lessons for Kathmandu, Nepal through Analysis of the Waste System in Tsukuba City, Japan. Journal of Scientific Research and Reports, 2015, 8, 1-13.	0.2	5
64	PACAP38 Differentially Effects Genes and CRMP2 Protein Expression in Ischemic Core and Penumbra Regions of Permanent Middle Cerebral Artery Occlusion Model Mice Brain. International Journal of Molecular Sciences, 2014, 15, 17014-17034.	4.1	21
65	Comprehensive Analysis of Neonatal versus Adult Unilateral Decortication in a Mouse Model Using Behavioral, Neuroanatomical, and DNA Microarray Approaches. International Journal of Molecular Sciences, 2014, 15, 22492-22517.	4.1	7
66	Seeking genes responsible for developmental origins of health and disease from the fetal mouse liver following maternal food restriction. Congenital Anomalies (discontinued), 2014, 54, n/a-n/a.	0.6	13
67	Genomic Methods for Improving Abiotic Stress Tolerance in Crops. , 2014, , 35-42.		1
68	Unraveling Low-Level Gamma Radiation-Responsive Changes in Expression of Early and Late Genes in Leaves of Rice Seedlings at litate Village, Fukushima. Journal of Heredity, 2014, 105, 723-738.	2.4	41
69	Rice proteomics: A model system for crop improvement and food security. Proteomics, 2014, 14, 593-610.	2.2	68
70	Proteomics of rice and <i>Cochliobolus miyabeanus</i> fungal interaction: Insight into proteins at intracellular and extracellular spaces. Proteomics, 2014, 14, 2307-2318.	2.2	45
71	Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection. Plant Pathology Journal, 2014, 30, 343-354.	1.7	40
72	Correction: Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. Journal of Neuroinflammation, 2013, 10, .	7.2	5

#	Article	IF	CITATIONS
73	Biofuels as a sustainable energy source: An update of the applications of proteomics in bioenergy crops and algae. Journal of Proteomics, 2013, 93, 234-244.	2.4	66
74	Deuterium labeling for investigating de novo synthesis of terpene volatiles in Achyranthes bidentata. Biotechnology Letters, 2013, 35, 1247-1252.	2.2	5
75	Plant proteomics in India and Nepal: current status and challenges ahead. Physiology and Molecular Biology of Plants, 2013, 19, 461-477.	3.1	7
76	Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics, 2013, 13, 2176-2179.	2.2	61
77	Rice Proteomic Analysis: Sample Preparation for Protein Identification. Methods in Molecular Biology, 2013, 956, 151-184.	0.9	6
78	In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. Journal of Proteomics, 2013, 78, 58-71.	2.4	104
79	Genome-wide mapping of the ozone-responsive transcriptomes in rice panicle and seed tissues reveals novel insight into their regulatory events. Biotechnology Letters, 2013, 35, 647-656.	2.2	13
80	Secretome analysis of the rice bacterium <i>Xanthomonas oryzae</i> (<i>Xoo</i>) using in vitro and in planta systems. Proteomics, 2013, 13, 1901-1912.	2.2	38
81	A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.	5.4	70
82	Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. Journal of Proteomics, 2013, 93, 74-92.	2.4	49
83	INPPO Actions and Recognition as a Driving Force for Progress in Plant Proteomics: Change of Guard, INPPO Update, and Upcoming Activities. Proteomics, 2013, 13, 3093-3100.	2.2	Ο
84	Comparative analysis of seed transcriptomes of ambient ozone-fumigated 2 different rice cultivars. Plant Signaling and Behavior, 2013, 8, e26300.	2.4	9
85	Lotus – A Source of Food and Medicine: Current Status and Future Perspectives in Context of the Seed Proteomics. International Journal of Life Sciences, 2013, 7, 1-5.	0.2	24
86	Rice Mitogen-Activated Protein Kinase Interactome Analysis Using the Yeast Two-Hybrid System Â. Plant Physiology, 2012, 160, 477-487.	4.8	81
87	Unraveling the ischemic brain transcriptome in a permanent middle cerebral artery occlusion mouse model by DNA microarray analysis. DMM Disease Models and Mechanisms, 2012, 5, 270-283.	2.4	62
88	Methyl jasmonate is transported to distal leaves via vascular process metabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signaling and Behavior, 2012, 7, 1378-1381.	2.4	22
89	Translational plant proteomics: A perspective. Journal of Proteomics, 2012, 75, 4588-4601.	2.4	63
90	Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. Journal of Neuroinflammation, 2012, 9, 256.	7.2	36

#	Article	IF	CITATIONS
91	ADHD Animal Model Characterization: Transcriptomics and Proteomics Analyses. Methods in Molecular Biology, 2012, 829, 505-530.	0.9	4
92	Global identification of potential gene biomarkers associated with ozone-induced foliar injury in rice seedling leaves by correlating their symptom severity with transcriptome profiling. International Journal of Life Sciences, 2012, 6, 1-13.	0.2	5
93	Boosting the Globalization of Plant Proteomics through INPPO: Current Developments and Future Prospects. Proteomics, 2012, 12, 359-368.	2.2	10
94	Secretome analysis of <i>Magnaporthe oryzae</i> using in vitro systems. Proteomics, 2012, 12, 878-900.	2.2	30
95	Characterization of Grain Amino Acid Composition and Proteome Profile of a High-lysine Barley Mutant Line M98. Hang'uk Jakmul Hakhoe Chi, 2012, 57, 171-181.	0.2	1
96	Science, Scientists, and Journal. International Journal of Life Sciences, 2012, 5, .	0.2	0
97	Comparative Secretome Investigation of <i>Magnaporthe oryzae</i> Proteins Responsive to Nitrogen Starvation. Journal of Proteome Research, 2011, 10, 3136-3148.	3.7	62
98	The <i>Arabidopsis</i> aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. New Phytologist, 2011, 191, 958-969.	7.3	30
99	Seeking gene candidates responsible for developmental origins of health and disease. Congenital Anomalies (discontinued), 2011, 51, 110-125.	0.6	19
100	Conversion of airborne nerolidol to DMNT emission requires additional signals inAchyranthes bidentata. FEBS Letters, 2011, 585, 1807-1813.	2.8	7
101	A comparative proteomics survey of proteins responsive to phosphorous starvation in roots of hydroponically-grown rice seedlings. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54, 667-677.	0.9	28
102	The RNase Activity of Rice Probenazole-Induced Protein1 (PBZ1) Plays a Key Role in Cell Death in Plants. Molecules and Cells, 2011, 31, 25-32.	2.6	70
103	Biotic Stress-Responsive Rice Proteome: An Overview. Journal of Plant Biology, 2011, 54, 219-226.	2.1	22
104	Time to articulate a vision for the future of plant proteomics – A global perspective: An initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics, 2011, 11, 1559-1568.	2.2	31
105	Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics, 2011, 11, 1630-1649.	2.2	96
106	Plant organelle proteomics: Collaborating for optimal cell function. Mass Spectrometry Reviews, 2011, 30, 772-853.	5.4	89
107	Tropospheric Ozone and Plants: Absorption, Responses, and Consequences. Reviews of Environmental Contamination and Toxicology, 2011, 212, 61-111.	1.3	42
108	MALDI Imaging Mass Spectrometry for Investigating the Brain. , 2011, , 765-783.		0

#	Article	IF	CITATIONS
109	Proteomics of ionic stresses in rice: An overview. Journal of Plant Biotechnology, 2011, 38, 130-136.	0.4	1
110	MALATâ€1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motilityâ€related genes. FEBS Letters, 2010, 584, 4575-4580.	2.8	391
111	Sugarcane proteomics: Establishment of a protein extraction method for 2â€DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis, 2010, 31, 1959-1974.	2.4	57
112	Plant secretome: Unlocking secrets of the secreted proteins. Proteomics, 2010, 10, 799-827.	2.2	255
113	Investigating the Impact of Elevated Levels of Ozone on Tropical Wheat Using Integrated Phenotypical, Physiological, Biochemical, and Proteomics Approaches. Journal of Proteome Research, 2010, 9, 4565-4584.	3.7	88
114	An in planta technique for cis-/trans-stereochemical analysis of jasmonoyl isoleucine. Journal of Plant Physiology, 2010, 167, 933-937.	3.5	8
115	Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model. International Journal of Molecular Sciences, 2009, 10, 1215-1225.	4.1	17
116	Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiology and Molecular Biology of Plants, 2009, 15, 31-41.	3.1	19
117	Plant phosphoproteomics: An update. Proteomics, 2009, 9, 964-988.	2.2	107
118	Secretome analysis of differentially induced proteins in rice suspensionâ€cultured cells triggered by rice blast fungus and elicitor. Proteomics, 2009, 9, 1302-1313.	2.2	65
119	Rice proteomics: Ending phase I and the beginning of phase II. Proteomics, 2009, 9, 935-963.	2.2	69
120	Physiology and proteomics of the waterâ€deficit stress response in three contrasting peanut genotypes. Plant, Cell and Environment, 2009, 32, 380-407.	5.7	127
121	Developing Rice Embryo Proteomics Reveals Essential Role for Embryonic Proteins in Regulation of Seed Germination. Journal of Proteome Research, 2009, 8, 3598-3605.	3.7	66
122	Integrated Transcriptomics, Proteomics, and Metabolomics Analyses To Survey Ozone Responses in the Leaves of Rice Seedling. Journal of Proteome Research, 2008, 7, 2980-2998.	3.7	159
123	Systematic Secretome Analyses of Rice Leaf and Seed Callus Suspension-Cultured Cells: Workflow Development and Establishment of High-Density Two-Dimensional Gel Reference Maps. Journal of Proteome Research, 2008, 7, 5187-5210.	3.7	58
124	Proteomics analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Science, 2008, 175, 321-329.	3.6	53
125	Interplant communication: Airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochemical and Biophysical Research Communications, 2008, 376, 723-727.	2.1	96
126	Proteomics- and Transcriptomics-Based Screening of Differentially Expressed Proteins and Genes in Brain of Wig Rat: A Model for Attention Deficit Hyperactivity Disorder (ADHD) Research. Journal of Proteome Research, 2008, 7, 2471-2489.	3.7	27

#	Article	IF	CITATIONS
127	Systematic Investigation of the Hemolymph Proteome of <i>Manduca sexta</i> at the Fifth Instar Larvae Stage Using One- and Two-Dimensional Proteomics Platforms. Journal of Proteome Research, 2008, 7, 938-959.	3.7	30
128	Proteomics of Two Cultivated Mushrooms <i>Sparassis crispa</i> and <i>Hericium erinaceum</i> Provides Insight into their Numerous Functional Protein Components and Diversity. Journal of Proteome Research, 2008, 7, 1819-1835.	3.7	40
129	Proteomics Analysis of Rice Lesion Mimic Mutant (<i>spl</i> 1) Reveals Tightly Localized Probenazole-Induced Protein (PBZ1) in Cells Undergoing Programmed Cell Death. Journal of Proteome Research, 2008, 7, 1750-1760.	3.7	55
130	Omics Tools for Environmental Monitoring of Chemicals, Radiation, and Physical Stresses in Saccharomyces Cerevisiae. , 2008, , 325-337.		1
131	Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Molecules and Cells, 2008, 25, 272-8.	2.6	13
132	Survey of Differentially Expressed Proteins and Genes in Jasmonic Acid Treated Rice Seedling Shoot and Root at the Proteomics and Transcriptomics Levels. Journal of Proteome Research, 2007, 6, 3581-3603.	3.7	48
133	Gel-Based Proteomics of Unilateral Irradiated Striatum after Gamma Knife Surgery. Journal of Proteome Research, 2007, 6, 2656-2668.	3.7	19
134	Gelâ€based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis, 2007, 28, 4369-4381.	2.4	51
135	Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. Plant Physiology and Biochemistry, 2007, 45, 834-850.	5.8	33
136	Differential Expression of Defense/Stress-Related Marker Proteins in Leaves of a Unique Rice Blast Lesion Mimic Mutant (blm). Journal of Proteome Research, 2006, 5, 2586-2598.	3.7	37
137	Plant phosphoproteomics: A long road ahead. Proteomics, 2006, 6, 5517-5528.	2.2	83
138	Rejuvenating rice proteomics: Facts, challenges, and visions. Proteomics, 2006, 6, 5549-5576.	2.2	58
139	Functional characterization ofÂOsRacB GTPase – aÂpotentially negative regulator ofÂbasal disease resistance inÂrice. Plant Physiology and Biochemistry, 2006, 44, 68-77.	5.8	43
140	Role ofÂdefense/stress-related marker genes, proteins andÂsecondary metabolites inÂdefining rice self-defense mechanisms. Plant Physiology and Biochemistry, 2006, 44, 261-273.	5.8	122
141	Protein extraction/solubilization protocol for monocot and dicot plant gel-based proteomics. Journal of Plant Biology, 2006, 49, 413-420.	2.1	35
142	Rice proteomics: A cornerstone for cereal food crop proteomes. Mass Spectrometry Reviews, 2006, 25, 1-53.	5.4	148
143	New protein extraction/solubilization protocol for gel-based proteomics of rat (female) whole brain and brain regions. Molecules and Cells, 2006, 22, 119-25.	2.6	34
144	System, trends and perspectives of proteomics in dicot plantsPart III: Unraveling the proteomes influenced by the environment, and at the levels of function and genetic relationships. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 815, 137-145.	2.3	57

#	Article	IF	CITATIONS
145	System, trends and perspectives of proteomics in dicot plantsPart II: Proteomes of the complex developmental stages. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 815, 125-136.	2.3	35
146	System, trends and perspectives of proteomics in dicot plantsPart I: Technologies in proteome establishment. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 815, 109-123.	2.3	54
147	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406.	5.8	60
148	A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005, 26, 4521-4539.	2.4	195
149	Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis. Molecular Biology Reports, 2005, 31, 217-230.	2.3	28
150	Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Molecular Biology Reports, 2004, 31, 113-119.	2.3	43
151	Rice octadecanoid pathway. Biochemical and Biophysical Research Communications, 2004, 317, 1-15.	2.1	94
152	Transcriptional profiling of OsHin1 in rice plants: a potential role in defense/stress and development. Plant Science, 2004, 166, 997-1005.	3.6	4
153	Rice proteomics: Current status and future perspectives. Electrophoresis, 2003, 24, 3378-3389.	2.4	75
154	Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene, 2003, 322, 93-103.	2.2	84
155	Small GTPase â€~Rop': molecular switch for plant defense responses. FEBS Letters, 2003, 546, 173-180.	2.8	73
156	Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of ArabidopsisAtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and Biophysical Research Communications, 2003, 300, 868-876.	2.1	94
157	Rice MAPKs. Biochemical and Biophysical Research Communications, 2003, 302, 171-180.	2.1	96
158	Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications, 2002, 294, 1009-1016.	2.1	164
159	Octadecanoid signaling component "burst―in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochemical and Biophysical Research Communications, 2002, 295, 1041-1045.	2.1	115
160	Rapid induction of defense/stress-related proteins in leaves of rice (Oryza sativa) seedlings exposed to ozone is preceded by newly phosphorylated proteins and changes in a 66-kDa ERK-type MAPK. Journal of Plant Physiology, 2002, 159, 361-369.	3.5	19
161	Cloning and characterization of a jasmonate inducible rice (Oryza sativa L.) peroxidase gene, OsPOX, against global signaling molecules and certain inhibitors of kinase-signaling cascade(s). Plant Science, 2002, 162, 49-58.	3.6	28
162	Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2002, 2, 947.	2.2	180

#	Article	IF	CITATIONS
163	Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry, 2002, 40, 1061-1069.	5.8	149
164	Jasmonic acid-induced necrosis and drastic decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase in rice seedlings under light involves reactive oxygen species. Journal of Plant Physiology, 2001, 158, 679-688.	3.5	24
165	Molecular Cloning and Characterization of a Novel Jasmonate Inducible Pathogenesis-Related Class 10 Protein Gene, JIOsPR10, from Rice (Oryza sativa L.) Seedling Leaves. Biochemical and Biophysical Research Communications, 2001, 286, 973-983.	2.1	146
166	Signalling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defence/stress response. Plant Physiology and Biochemistry, 2001, 39, 1095-1103.	5.8	126
167	Differential induction of three pathogenesis-related genes, PR10, PR1b and PR5 by the ethylene generator ethephon under light and dark in rice (Oryza sativa L.) seedlings. Journal of Plant Physiology, 2001, 158, 133-137.	3.5	59
168	Stress signaling molecules involved in defense and protein phosphatase 2A inhibitors modulate OsCATC expression in rice (Oryza sativa) seedlings. Journal of Plant Physiology, 2001, 158, 1349-1355.	3.5	14
169	Jasmonate, salicylate, protein phosphatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryza sativa). Journal of Plant Physiology, 2001, 158, 1357-1362.	3.5	29
170	Light-dependent induction of OsPR10 in rice (Oryza sativa L.) seedlings by the global stress signaling molecule jasmonic acid and protein phosphatase 2A inhibitors. Plant Science, 2001, 161, 469-479.	3.6	50
171	Protein phosphatase inhibitors activate defense responses in rice (Oryza sativa) leaves. Physiologia Plantarum, 2001, 111, 151-157.	5.2	47
172	High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/ fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis, 2001, 22, 2824-2831.	2.4	180
173	Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis, 2000, 21, 2492-2500.	2.4	147
174	Naringenin 7-O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Science, 2000, 155, 213-221.	3.6	44
175	Separation and characterization of proteins from green and etiolated shoots of rice (Oryza sativaL.): Towards a rice proteome. Electrophoresis, 1999, 20, 630-636.	2.4	107
176	Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: Induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis, 1999, 20, 3472-3478.	2.4	119
177	Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: Induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis, 1999, 20, 3472-3478.	2.4	1
178	Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Letters, 1997, 412, 61-64.	2.8	90
179	A Methyltransferase for Synthesis of the Flavanone Phytoalexin Sakuranetin in Rice Leaves. Biochemical and Biophysical Research Communications, 1996, 222, 732-735.	2.1	63
180	Role of Jasmonic Acid as a Signaling Molecule in Copper Chloride-elicited Rice Phytoalexin Production. Bioscience, Biotechnology and Biochemistry, 1996, 60, 1046-1048.	1.3	102

#	Article	IF	CITATIONS
181	Unraveling Plant Vacuoles by Proteomics. , 0, , 391-405.		1
182	Phosphoproteins: Where are we Today?. , 0, , 419-442.		0
183	Proteome Analysis of the Ubiquitin Pathway. , 0, , 443-453.		1
184	Analysis of theN-Glycosylation of Proteins in Plants. , 0, , 455-467.		2
185	Functional Analysis and Phosphorylation Site Mapping of Leucine-Rich Repeat Receptor-Like Kinases. , 0, , 469-483.		4
186	Time to Search for Protein Kinase Substrates. , 0, , 485-498.		2
187	Tyrosine Phosphorylation in Plants: Emerging Evidence. , 0, , 499-513.		1
188	14–3–3 Proteins: Regulators of Key Cellular Functions. , 0, , 515-524.		2
189	Mass Spectrometry-Based Proteomics: Identifying Plant Proteins. , 0, , 33-45.		3
190	Chemical Proteomics. , 0, , 47-59.		1
191	Secretome: Toward Deciphering the Secretory Pathways and Beyond. , 0, , 83-90.		3
192	TheArabidopsis Localizome: Subcellular Protein Localization and Interactions inARABIDOPSIS. , 0, , 61-81.		0
193	Peptidomics. , 0, , 91-104.		Ο
194	Bioinformatics in Gel-Based Proteomics. , 0, , 105-125.		1
195	Bioinformatics in MS-Based Proteomics. , 0, , 127-139.		Ο
196	An Overview of theArabidopsis Proteome. , 0, , 141-164.		6
197	Rice Proteome at a Glance. , 0, , 165-178.		6
198	Proteomics of Legume Plants. , 0, , 179-189.	_	2

1

#	Article	IF	CITATIONS
199	Proteome of Seed Development and Germination. , 0, , 191-206.		6
200	Endosperm and Amyloplast Proteomes of Wheat Grain. , 0, , 207-222.		2
201	Root Proteome. , 0, , 223-237.		0
202	Leaf Proteome. , 0, , 239-248.		0
203	Anther Proteome. , 0, , 249-260.		0
204	Pollen Proteome. , 0, , 261-273.		0
205	Cell Wall. , 0, , 291-307.		0
206	Plasma Membrane: A Peculiar Status Among the Cell Membrane Systems. , 0, , 309-326.		1
207	Microtubule-Binding Proteins. , 0, , 275-289.		1
208	Proteome Analysis of Cellular Responses to Abiotic Stresses in Plants. , 0, , 605-627.		1
209	Protein–Protein Interaction Mapping in Plants. , 0, , 571-583.		1
210	Proteomics in Plant Defense Response. , 0, , 585-604.		10
211	Cell-Free Expression System for Eukaryotic Proteins. , 0, , 659-669.		0
212	Chloroplast. , 0, , 339-349.		0
213	Blue-Native Page in Studying Protein Complexes. , 0, , 557-569.		0
214	Tap Strategy inArabidopsis Protein Complex Isolation. , 0, , 543-556.		4
215	Etioplast. , 0, , 351-360.		0

216

Nucleus., 0,, 327-338.

#	Article	IF	CITATIONS
217	Peroxisome. , 0, , 377-389.		1
218	Proteomics of Biotrophic Plant–Microbe Interactions: Symbioses Lead the March. , 0, , 629-643.		2
219	The Plant Mitochondrial Proteome and the Challenge of Hydrophobic Protein Analysis. , 0, , 361-375.		Ο
220	Proteomics Approaches to Construct Calcium Signaling Networks in Plants. , 0, , 645-657.		0
221	Proteomics in Developing Countries. , 0, , 713-729.		Ο