Jonas Kublitski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7448417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers. Nature Communications, 2020, 11, 833.	12.8	130
2	Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nature Communications, 2021, 12, 551.	12.8	122
3	Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nature Communications, 2019, 10, 2466.	12.8	101
4	Intrinsic Detectivity Limits of Organic Nearâ€Infrared Photodetectors. Advanced Materials, 2020, 32, e2003818.	21.0	95
5	Narrowband organic photodetectors – towards miniaturized, spectroscopic sensing. Materials Horizons, 2022, 9, 220-251.	12.2	76
6	Strong light-matter coupling for reduced photon energy losses in organic photovoltaics. Nature Communications, 2019, 10, 3706.	12.8	72
7	Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nature Communications, 2021, 12, 4259.	12.8	69
8	Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nature Communications, 2020, 11, 4617.	12.8	60
9	Miniaturized VISâ€NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 10 ¹⁴ Jones. Advanced Materials, 2021, 33, e2102967.	21.0	58
10	Manipulating the Charge Transfer Absorption for Narrowband Light Detection in the Near-Infrared. Chemistry of Materials, 2019, 31, 9325-9330.	6.7	40
11	Stacked Dualâ€Wavelength Nearâ€Infrared Organic Photodetectors. Advanced Optical Materials, 2021, 9, 2001784.	7.3	40
12	Photomultiplicationâ€Type Organic Photodetectors for Nearâ€Infrared Sensing with High and Biasâ€Independent Specific Detectivity. Advanced Science, 2022, 9, e2105113.	11.2	33
13	Field Effect versus Driving Force: Charge Generation in Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002124.	19.5	19
14	Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nature Materials, 2021, 20, 1407-1413.	27.5	17
15	Enhanced Charge Selectivity via Anodic-C ₆₀ Layer Reduces Nonradiative Losses in Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 12603-12609.	8.0	9
16	Electrode material dependent p- or n-like thermoelectric behavior of single electrochemically synthesized poly(2,2′–bithiophene) layer—application to thin film thermoelectric generator. Journal of Solid State Electrochemistry, 2016, 20, 2191-2196.	2.5	6
17	Mechanical, structural and tribological properties of superaustenitic stainless steel submitted at solution heat treatment. Revista Materia, 2015, 20, 160-168.	0.2	3
18	Reply to Comment on "Enhanced Charge Selectivity via Anodic-C ₆₀ Layer Reduces Nonradiative Losses in Organic Solar Cells― ACS Applied Materials & Interfaces, 2022, 14, 7527-7530.	8.0	2

Jonas Kublitski

#	Article	IF	CITATIONS
19	Organic Semiconductor Devices for Light Detection. Springer Theses, 2022, , .	0.1	0
20	Enhancing Sub-Bandgap External Quantum Efficiency by Photomultiplication in Narrowband Organic Near-Infrared Photodetectors. Springer Theses, 2022, , 151-169.	0.1	0
21	Organic Semiconductors for Light Detection. Springer Theses, 2022, , 49-90.	0.1	0
22	Fundamentals of Light Detection. Springer Theses, 2022, , 11-48.	0.1	0