
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7446670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Aromaticity, and Application of <i>peri</i> â€Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
2	Lowâ€Threshold Excitonâ€Polariton Condensation via Fast Polariton Relaxation in Organic Microcavities. Advanced Optical Materials, 2022, 10, 2102034.	7.3	13
3	High-performance solution-processed red hyperfluorescent OLEDs based on cibalackrot. Journal of Materials Chemistry C, 2022, 10, 4767-4774.	5.5	19
4	Numerical Study of Triplet Dynamics in Organic Semiconductors Aimed for the Active Utilization of Triplets by TADF under Continuous-Wave Lasing. Journal of Physical Chemistry Letters, 2022, 13, 1323-1329.	4.6	6
5	Low Light Amplification Threshold and Reduced Efficiency Rollâ€Off in Thick Emissive Layer OLEDs from a Diketopyrrolopyrrole Derivative. Macromolecular Rapid Communications, 2022, 43, e2200115.	3.9	4
6	Cibalackrot Dendrimers for Hyperfluorescent Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2022, 43, e2200118.	3.9	4
7	Highly Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes Based on Rational Molecular Design and Device Engineering. Advanced Functional Materials, 2022, 32, .	14.9	27
8	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	7.4	8
9	Tailorâ€Made Multiâ€Resonance Terminal Emitters toward Narrowband, Highâ€Efficiency, and Stable Hyperfluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	21
10	Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues. Chemical Science, 2021, 12, 552-558.	7.4	14
11	Advantages of naphthalene as a building block for organic solid state laser dyes: smaller energy gaps and enhanced stability. Journal of Materials Chemistry C, 2021, 9, 4112-4118.	5.5	5
12	Realizing Nearâ€Infrared Laser Dyes through a Shift inÂExcitedâ€ S tate Absorption. Advanced Optical Materials, 2021, 9, 2001947.	7.3	19
13	An Electronâ€Accepting azaâ€BODIPYâ€Based Donor–Acceptor–Donor Architecture for Bright NIR Emission. Chemistry - A European Journal, 2021, 27, 5259-5267.	3.3	33
14	Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000057.	9.9	22
15	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie - International Edition, 2021, 60, 8477-8482.	13.8	130
16	Investigating HOMO Energy Levels of Terminal Emitters for Realizing Highâ€Brightness and Stable TADFâ€Assisted Fluorescence Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001090.	5.1	55
17	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie, 2021, 133, 8558-8563.	2.0	23
18	Synthesis and Characterization of 5,5â \in ² -Bitetracene. Chemistry Letters, 2021, 50, 800-803.	1.3	1

#	Article	IF	CITATIONS
19	Advanced Technology for Organic Light-emitting Transistor. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 283-285.	0.0	0
20	Recent Progress on Organic Semiconductor Laser Molecules. Vacuum and Surface Science, 2021, 64, 4-9.	0.1	0
21	Amplified spontaneous emission from oligo(<i>p</i> -phenylenevinylene) derivatives. Materials Advances, 2021, 2, 3906-3914.	5.4	7
22	Design Strategy for Robust Organic Semiconductor Laser Dyes. , 2020, 2, 161-167.		47
23	Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers. Advanced Optical Materials, 2020, 8, 1901670.	7.3	14
24	Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nature Communications, 2020, 11, 5623.	12.8	31
25	Synthesis and photochromic behaviour of a series of benzopyrans bearing an N-phenyl-carbazole moiety: photochromism control by the steric effect. Photochemical and Photobiological Sciences, 2020, 19, 1344-1355.	2.9	4
26	Surface Segregation of a Star-Shaped Polyhedral Oligomeric Silsesquioxane in a Polymer Matrix. Langmuir, 2020, 36, 9960-9966.	3.5	7
27	Modulating the ground state, stability and charge transport in OFETs of biradicaloid hexahydro-diindenopyrene derivatives and a proposed method to estimate the biradical character. Chemical Science, 2020, 11, 12194-12205.	7.4	25
28	Exciton–Exciton Annihilation in Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2020, 30, 2000580.	14.9	45
29	F8BT Oligomers for Organic Solid-State Lasers. ACS Applied Materials & Interfaces, 2020, 12, 28383-28391.	8.0	20
30	High EQE and High Brightness Solutionâ€Processed TADF Lightâ€Emitting Transistors and OLEDs. Advanced Optical Materials, 2020, 8, 2000554.	7.3	21
31	Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State Intramolecular Proton Transfer System. Journal of Physical Chemistry Letters, 2020, 11, 3305-3312.	4.6	28
32	33â€4: Invited Paper: A Chemical Structure Approach Enhancing Light Outcoupling of Dopant OLEDs and Internal Quantum Efficiency of Nonâ€Đopant OLEDs Having Bluish TADF Emitters. Digest of Technical Papers SID International Symposium, 2019, 50, 470-473.	0.3	0
33	Excellent Semiconductors Based on Tetracenotetracene and Pentacenopentacene: From Stable Closed-Shell to Singlet Open-Shell. Journal of the American Chemical Society, 2019, 141, 9373-9381.	13.7	40
34	Simple Molecular-Engineering Approach for Enhancing Orientation and Outcoupling Efficiency of Thermally Activated Delayed Fluorescent Emitters without Red-Shifting Emission. ACS Applied Materials & Interfaces, 2018, 10, 43842-43849.	8.0	30
35	Low Amplified Spontaneous Emission Threshold and Efficient Electroluminescence from a Carbazole Derivatized Excited-State Intramolecular Proton Transfer Dye. ACS Photonics, 2018, 5, 4447-4455.	6.6	47
36	High Performance p―and nâ€Type Lightâ€Emitting Fieldâ€Effect Transistors Employing Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800340.	14.9	31

#	Article	IF	CITATIONS
37	Low Amplified Spontaneous Emission Threshold from Organic Dyes Based on Bisâ€stilbene. Advanced Functional Materials, 2018, 28, 1802130.	14.9	48
38	The Importance of Excited tate Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie, 2018, 130, 12560-12564.	2.0	25
39	The Importance of Excitedâ€State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie - International Edition, 2018, 57, 12380-12384.	13.8	83
40	Field-Effect Transistors: High Performance p- and n-Type Light-Emitting Field-Effect Transistors Employing Thermally Activated Delayed Fluorescence (Adv. Funct. Mater. 28/2018). Advanced Functional Materials, 2018, 28, 1870193.	14.9	1
41	Synthesis, crystal structure, and FET characteristics of thieno[2,3-b]thiophene-based bent-thienoacenes. Tetrahedron Letters, 2017, 58, 963-967.	1.4	10
42	Low Bandgap Bistetraceneâ€Based Organic Semiconductors Exhibiting Air Stability, High Aromaticity and Mobility. Chemistry - A European Journal, 2017, 23, 5076-5080.	3.3	28
43	Asymmetric Alkylthienyl Thienoacenes Derived from Anthra[2,3- <i>b</i>]thieno[2,3- <i>d</i>]thiophene for Solution-Processable Organic Semiconductors. ACS Applied Materials & Interfaces, 2017, 9, 9902-9909.	8.0	22
44	One-step, green synthesis of a supramolecular organogelator based on mellitic triimide for the recognition of aromatic compounds. Chemical Communications, 2017, 53, 8834-8837.	4.1	6
45	Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System. ACS Central Science, 2017, 3, 769-777.	11.3	148
46	Synthesis and solid-state polymerization of diacetylene derivatives directly substituted with a phenylcarbazole moiety. Polymer Journal, 2016, 48, 1013-1018.	2.7	10
47	Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications. Scientific Reports, 2016, 6, 25714.	3.3	134
48	Crystal Structure and Theoretical Investigation of Charge-transport Properties of Fullerene Derivatives. Chemistry Letters, 2016, 45, 1421-1424.	1.3	5
49	Crystal structure and modeled charge carrier mobility of benzobis(thiadiazole) derivatives. New Journal of Chemistry, 2016, 40, 1403-1411.	2.8	10
50	Synthesis and Solid-State Polymerization of Diacetylene Derivatives with an <i>N</i> -Carbazolylphenyl Group. Bulletin of the Chemical Society of Japan, 2015, 88, 843-849.	3.2	7
51	Diindeno[1,2-b:2′,1′-n]perylene: a closed shell related Chichibabin's hydrocarbon, the synthesis, molecular packing, electronic and charge transport properties. Chemical Science, 2015, 6, 3402-3409.	7.4	49
52	A Solution-Processed Organic Thin-Film Transistor Backplane for Flexible Multiphoton Emission Organic Light-Emitting Diode Displays. IEEE Electron Device Letters, 2015, 36, 841-843.	3.9	56
53	Characterization of New Rubrene Analogues with Heteroaryl Substituents. Crystal Growth and Design, 2015, 15, 442-448.	3.0	26
54	A Unique Solution-Processable n-Type Semiconductor Material Design for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2015, 27, 141-147.	6.7	76

#	Article	IF	CITATIONS
55	Benzimidazole Derivatives: Synthesis, Physical Properties, and nâ€Type Semiconducting Properties. Chemistry - A European Journal, 2014, 20, 11835-11846.	3.3	50
56	Synthesis of Narrow Bandgap Polymers based on Benzobis(thiadiazole) and their Application to Organic Transistor Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 321-326.	0.3	2
57	Synthesis and Thin-film Transistor Characterization of Narrow-gap n-Type Semiconducting Polymers Based on Benzobis(thiadiazole). Chemistry Letters, 2014, 43, 402-404.	1.3	7
58	Synthesis of Semiconducting Polymers through Soluble Precursor Polymers with Thermally Removable Groups and Their Application to Organic Transistors. ACS Macro Letters, 2013, 2, 830-833.	4.8	15
59	<i>syn</i> -/ <i>anti</i> -Anthradithiophene Derivative Isomer Effects on Semiconducting Properties. ACS Applied Materials & Interfaces, 2013, 5, 9670-9677.	8.0	65
60	Synthesis, Physical Properties, and Field-Effect Mobility of Isomerically Pure <i>syn</i> -/ <i>anti</i> -Anthradithiophene Derivatives. Organic Letters, 2012, 14, 4062-4065.	4.6	46
61	Charge transport, carrier balance, and blue electrophosphorescence in diphenyl[4-(triphenylsilyl)phenyl]phosphine oxide devices. Applied Physics Letters, 2011, 98, .	3.3	24
62	Green Synthesis of Polycyclic Benzimidazole Derivatives and Organic Semiconductors. Organic Letters, 2011, 13, 4882-4885.	4.6	76
63	Organic Field-Effect Transistors Based on ï€-Extended Dibenzotetrathiafulvalene Analogues with Thiophene Spacers. Bulletin of the Chemical Society of Japan, 2010, 83, 575-581.	3.2	6
64	Novel Semiconducting Quinone for Air-Stable n-Type Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2010, 2, 1303-1307.	8.0	50
65	Low-Voltage and Hysteresis-Free N-Type Organic Thin Film Transistor and Complementary Inverter with Bilayer Gate Insulator. Japanese Journal of Applied Physics, 2009, 48, 111504.	1.5	16
66	Field-Effect Transistors Based on Tetraphenyldipyranylidenes and the Sulfur Analogues. Chemistry of Materials, 2009, 21, 4350-4352.	6.7	30
67	Anthraquinone derivatives affording n-type organic thin film transistors. Chemical Communications, 2009, , 2177.	4.1	49
68	Triclinic polymorph of dibenzotetrathiafulvalene. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2083-o2083.	0.2	13
69	High performance organic field-effect transistors based on [2,2′]bi[naphtho[2,3-b]thiophenyl] with a simple structure. Journal of Materials Chemistry, 2008, 18, 3442.	6.7	32
70	Preparation, Characterization, and Field-effect Transistor Performance of Benzo[1,2- <i>d</i> :4,5- <i>d</i> ′]bisthiazole Derivatives. Chemistry Letters, 2008, 37, 766-767.	1.3	28
71	<i>n</i> -Type Organic Field-Effect Transistors with High Electron Mobilities Based on Thiazoleâ^Thiazolothiazole Conjugated Molecules. Chemistry of Materials, 2007, 19, 5404-5409.	6.7	97
72	Unimolecular Reactions of Diethyl Malonate Cation in Gas-phase. Journal of the Mass Spectrometry Society of Japan, 2004, 52, 263-270.	0.1	2

#	Article	IF	CITATIONS
73	Unimolecular metastable decompositions of 1,1,1-trifluoroisopropyl methyl ether [CF3(CH3)CHOCH3] upon electron ionization. Rapid Communications in Mass Spectrometry, 2003, 17, 503-506.	1.5	6
74	Unimolecular Gas-Phase Reactions of Diethyl Phthalate, Isophthalate, and Terephthalate upon Electron Ionization. Australian Journal of Chemistry, 2003, 56, 473.	0.9	3
75	Synthesis, crystal structure, tropicity and charge transport properties of diindenothienothiophene derivatives. Journal of Materials Chemistry C, O, , .	5.5	1