
Javier Paz-Ares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7446012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 2007, 39, 1033-1037.	21.4	1,845
2	A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development, 2001, 15, 2122-2133.	5.9	1,087
3	The <i>Arabidopsis</i> bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	6.6	906
4	Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543, 513-518.	27.8	669
5	A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis. PLoS Genetics, 2010, 6, e1001102.	3.5	583
6	Towards functional characterisation of the members of theR2R3-MYBgene family fromArabidopsis thaliana. Plant Journal, 1998, 16, 263-276.	5.7	554
7	MYB transcription factors in plants. Trends in Genetics, 1997, 13, 67-73.	6.7	524
8	SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14947-14952.	7.1	372
9	Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant Journal, 2000, 24, 559-567.	5.7	366
10	A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1001031.	3.5	339
11	Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants, 2015, 1, 15025.	9.3	331
12	A Mutant of the Arabidopsis Phosphate Transporter PHT1;1 Displays Enhanced Arsenic Accumulation. Plant Cell, 2007, 19, 1123-1133.	6.6	295
13	Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant Journal, 2010, 64, 775-789.	5.7	293
14	Plant hormones and nutrient signaling. Plant Molecular Biology, 2009, 69, 361-373.	3.9	290
15	A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant Journal, 1999, 19, 579-589.	5.7	286
16	PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 Is a Plant-Specific SEC12-Related Protein That Enables the Endoplasmic Reticulum Exit of a High-Affinity Phosphate Transporter in Arabidopsis Â[W]. Plant Cell, 2005, 17, 3500-3512.	6.6	285
17	Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications. Genome Research, 2004, 14, 2176-2189.	5.5	282
18	Interaction between Phosphate-Starvation, Sugar, and Cytokinin Signaling in Arabidopsis and the Roles of Cytokinin Receptors CRE1/AHK4 and AHK3. Plant Physiology, 2005, 138, 847-857.	4.8	261

JAVIER PAZ-ARES

#	Article	IF	CITATIONS
19	The transcriptional control of plant responses to phosphate limitation. Journal of Experimental Botany, 2004, 55, 285-293.	4.8	232
20	<i>Arabidopsis thaliana</i> High-Affinity Phosphate Transporters Exhibit Multiple Levels of Posttranslational Regulation A. Plant Cell, 2011, 23, 1523-1535.	6.6	218
21	Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 712-728.	6.6	186
22	Molecular cloning of the <i>c</i> locus of <i>Zea mays</i> : a locus regulating the anthocyanin pathway. EMBO Journal, 1986, 5, 829-833.	7.8	176
23	WRKY6 Transcription Factor Restricts Arsenate Uptake and Transposon Activation in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 2944-2957.	6.6	176
24	Mutations atCRE1impair cytokinin-induced repression of phosphate starvation responses inArabidopsis. Plant Journal, 2002, 32, 353-360.	5.7	165
25	Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 2015, 1, 14023.	9.3	156
26	Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. Plant Cell, 1999, 11, 1827-1840.	6.6	151
27	Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Current Opinion in Plant Biology, 2017, 39, 40-49.	7.1	149
28	Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nature Communications, 2014, 5, 4617.	12.8	136
29	CATMA: a complete Arabidopsis GST database. Nucleic Acids Research, 2003, 31, 156-158.	14.5	133
30	Role of Actin Cytoskeleton in Brassinosteroid Signaling and in Its Integration with the Auxin Response in Plants. Developmental Cell, 2012, 22, 1275-1285.	7.0	127
31	The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels. Plant Cell, 2015, 27, 711-723.	6.6	120
32	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
33	Petunia hybrida genes related to the maize regulatory C1 gene and to animal myb proto-oncogenes. Plant Journal, 1993, 3, 553-562.	5.7	90
34	ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. Plant Cell, 2015, 27, 2560-2581.	6.6	81
35	Speeding Cis-Trans Regulation Discovery by Phylogenomic Analyses Coupled with Screenings of an Arrayed Library of Arabidopsis Transcription Factors. PLoS ONE, 2011, 6, e21524.	2.5	78
36	Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Molecular Plant, 2022, 15, 104-124.	8.3	70

JAVIER PAZ-ARES

#	Article	IF	CITATIONS
37	Multiple genes are transcribed in Hordeum vulgare and Zea mays that carry the DNA binding domain of the myb oncoproteins. Molecular Genetics and Genomics, 1989, 216, 183-187.	2.4	69
38	REGIA, An EU Project on Functional Genomics of Transcription Factors fromArabidopsis thaliana. Comparative and Functional Genomics, 2002, 3, 102-108.	2.0	69
39	Cloning and nucleotide sequence of a cDNA encoding the precursor of the barley toxin alpha-hordothionin. FEBS Journal, 1986, 156, 131-135.	0.2	67
40	<i>Arabidopsis</i> ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5543-51.	7.1	56
41	ceRNAs: miRNA Target Mimic Mimics. Cell, 2011, 147, 1431-1432.	28.9	54
42	A Single Residue Substitution Causes a Switch from the Dual DNA Binding Specificity of Plant Transcription Factor MYB.Ph3 to the Animal c-MYB Specificity. Journal of Biological Chemistry, 1997, 272, 2889-2895.	3.4	44
43	Polyadenylation site heterogeneity in mRNA encoding the precursor of the barley toxin β-hordothionin. FEBS Letters, 1986, 200, 103-106.	2.8	43
44	Cytokinin determines thiol-mediated arsenic tolerance and accumulation in Arabidopsis thaliana. Plant Physiology, 2016, 171, pp.00372.2016.	4.8	43
45	A reciprocal inhibitory module for Pi and iron signaling. Molecular Plant, 2022, 15, 138-150.	8.3	43
46	Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. Plant Cell, 2019, 31, 2411-2429.	6.6	40
47	Interallelic complementation at theArabidopsis CRE1locus uncovers independent pathways for the proliferation of vascular initials and canonical cytokinin signalling. Plant Journal, 2004, 38, 70-79.	5.7	38
48	A dimeric inhibitor or insect alpha-amylase from barley. Cloning of the cDNA and identification of the protein. FEBS Journal, 1988, 172, 129-134.	0.2	31
49	Roles of Ubiquitination in the Control of Phosphate Starvation Responses in Plants ^F . Journal of Integrative Plant Biology, 2013, 55, 40-53.	8.5	31
50	Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. Journal of Proteomics, 2013, 94, 1-22.	2.4	28
51	Multiâ€gene silencing in Arabidopsis: a collection of artificial micro <scp>RNA</scp> s targeting groups of paralogs encoding transcription factors. Plant Journal, 2014, 80, 149-160.	5.7	27
52	In vivo and in vitro synthesis of CM-proteins (A-hordeins) from barley (Hordeum vulgare L.). Planta, 1983, 157, 74-80.	3.2	26
53	Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. Plant Molecular Biology, 1996, 32, 1171-1176.	3.9	24
54	MYB.Ph3 transcription factor from Petunia hybrida induces similar DNA-bending/distortions on its two types of binding site. Plant Journal, 1995, 8, 673-682.	5.7	23

JAVIER PAZ-ARES

#	Article	IF	CITATIONS
55	Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis. Molecular Plant, 2021, 14, 1489-1507.	8.3	21
56	Inhibition of eukaryotic cell-free protein synthesis by thionins from wheat endosperm. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1983, 740, 52-56.	2.4	20
57	When nitrate and phosphate sensors meet. Nature Plants, 2019, 5, 339-340.	9.3	17
58	Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. Plant Cell, 1999, 11, 1827.	6.6	13
59	KISS ME DEADLY F-box proteins modulate cytokinin responses by targeting the transcription factor TCP14 for degradation. Plant Physiology, 2021, 185, 1495-1499.	4.8	3