Ou Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7444594/publications.pdf

Version: 2024-02-01

45317 53794 9,121 88 45 90 citations h-index g-index papers 93 93 93 13097 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidthsÂandÂsuppressed blinking. Nature Materials, 2013, 12, 445-451.	27.5	1,168
2	Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotechnology, 2012, 7, 383-388.	31.5	928
3	Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nature Biomedical Engineering, 2017, 1, .	22.5	490
4	Fluorescent Nanorods and Nanospheres for Realâ€Time In Vivo Probing of Nanoparticle Shapeâ€Dependent Tumor Penetration. Angewandte Chemie - International Edition, 2011, 50, 11417-11420.	13.8	399
5	Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2325-2330.	7.1	374
6	Self-Assembled Colloidal Superparticles from Nanorods. Science, 2012, 338, 358-363.	12.6	332
7	Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. Journal of the American Chemical Society, 2006, 128, 12428-12429.	13.7	297
8	Nanocube Superlattices of Cesium Lead Bromide Perovskites and Pressureâ€Induced Phase Transformations at Atomic and Mesoscale Levels. Advanced Materials, 2017, 29, 1606666.	21.0	238
9	Magneto-fluorescent core-shell supernanoparticles. Nature Communications, 2014, 5, 5093.	12.8	223
10	Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nature Communications, 2016, 7, 12749.	12.8	209
11	Synthesis of Metal–Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor. Angewandte Chemie - International Edition, 2008, 47, 8638-8641.	13.8	195
12	Yb- and Mn-Doped Lead-Free Double Perovskite Cs ₂ AgBiX ₆ (X = Cl [–] ,) 1	j ETQq0 0	0 rgBT /Overl
13	On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. Journal of the American Chemical Society, 2008, 130, 15649-15661.	13.7	168
14	Shortwave Infrared in Vivo Imaging with Gold Nanoclusters. Nano Letters, 2017, 17, 6330-6334.	9.1	149
15	Superstructures generated from truncated tetrahedral quantum dots. Nature, 2018, 561, 378-382.	27.8	143
16	Synthesis of Lead-Free Cs $<$ sub $>$ 2 $<$ /sub $>$ AgBiX $<$ sub $>$ 6 $<$ /sub $>$ (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO $<$ sub $>$ 2 $<$ /sub $>$ Photocatalytic Reduction. Nano Letters, 2021, 21, 1620-1627.	9.1	140
17	Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton–Phonon Coupling and the Optimization of Spectral Linewidths. Nano Letters, 2016, 16, 289-296.	9.1	133
18	Lead-Free Cs ₄ CuSb ₂ Cl ₁₂ Layered Double Perovskite Nanocrystals. Journal of the American Chemical Society, 2020, 142, 11927-11936.	13.7	131

#	Article	IF	Citations
19	Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nature Chemistry, 2013, 5, 602-606.	13.6	130
20	Lipolysis Triggers a Systemic Insulin Response Essential for Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice. Cell Metabolism, 2018, 28, 644-655.e4.	16.2	129
21	Surface-Functionalization-Dependent Optical Properties of Il–VI Semiconductor Nanocrystals. Journal of the American Chemical Society, 2011, 133, 17504-17512.	13.7	121
22	Synthesis of formamidinium lead halide perovskite nanocrystals through solid–liquid–solid cation exchange. Journal of Materials Chemistry C, 2017, 5, 5680-5684.	5. 5	113
23	Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. Advanced Science, 2021, 8, 2100214.	11.2	109
24	Optical Trapping and Two-Photon Excitation of Colloidal Quantum Dots Using Bowtie Apertures. ACS Photonics, 2016, 3, 423-427.	6.6	107
25	Mn ²⁺ /Yb ³⁺ Codoped CsPbCl ₃ Perovskite Nanocrystals with Tripleâ€Wavelength Emission for Luminescent Solar Concentrators. Advanced Science, 2020, 7, 2001317.	11.2	105
26	Pure colors from core–shell quantum dots. MRS Bulletin, 2013, 38, 696-702.	3.5	99
27	Cylindrical Superparticles from Semiconductor Nanorods. Journal of the American Chemical Society, 2009, 131, 6084-6085.	13.7	93
28	Synthesis of All-Inorganic Cd-Doped CsPbCl ₃ Perovskite Nanocrystals with Dual-Wavelength Emission. Journal of Physical Chemistry Letters, 2018, 9, 7079-7084.	4.6	92
29	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	9.1	85
30	Excitationâ€Intensityâ€Dependent Colorâ€Tunable Dual Emissions from Manganeseâ€Doped CdS/ZnS Core/Shell Nanocrystals. Angewandte Chemie - International Edition, 2010, 49, 10132-10135.	13.8	82
31	Quantum-Dot-Induced Cesium-Rich Surface Imparts Enhanced Stability to Formamidinium Lead Iodide Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1970-1975.	17.4	82
32	Biexciton Quantum Yield Heterogeneities in Single CdSe (CdS) Core (Shell) Nanocrystals and Its Correlation to Exciton Blinking. Nano Letters, 2012, 12, 4477-4483.	9.1	81
33	Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. Science, 2018, 362, 1396-1400.	12.6	79
34	Synthesis and transformation of zero-dimensional Cs3BiX6 ($X = Cl, Br$) perovskite-analogue nanocrystals. Nano Research, 2020, 13, 282-291.	10.4	79
35	Pressure-Induced Phase Transformation and Band-Gap Engineering of Formamidinium Lead Iodide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 4199-4205.	4.6	78
36	Structural Control of Nanocrystal Superlattices Using Organic Guest Molecules. Journal of the American Chemical Society, 2012, 134, 2868-2871.	13.7	76

#	Article	IF	CITATIONS
37	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 22563-22569.	13.8	73
38	Formation of Heterodimer Nanocrystals: UO ₂ /In ₂ O ₃ and FePt/In ₂ O ₃ . Journal of the American Chemical Society, 2011, 133, 14327-14337.	13.7	70
39	Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals. Journal of the American Chemical Society, 2017, 139, 8408-8411.	13.7	62
40	Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core–Shell Nanocrystals. Chemistry of Materials, 2017, 29, 4097-4108.	6.7	59
41	Integrating <i>in situ</i> high pressure small and wide angle synchrotron x-ray scattering for exploiting new physics of nanoparticle supercrystals. Review of Scientific Instruments, 2010, 81, 093902.	1.3	57
42	Multi-component superstructures self-assembled from nanocrystal building blocks. Nanoscale, 2016, 8, 9944-9961.	5.6	49
43	Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals. Journal of the American Chemical Society, 2019, 141, 6013-6021.	13.7	49
44	Competing Interactions between Various Entropic Forces toward Assembly of Pt ₃ Ni Octahedra into a Body-Centered Cubic Superlattice. Nano Letters, 2016, 16, 2792-2799.	9.1	48
45	Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metabolism, 2021, 33, 547-564.e7.	16.2	48
46	Quantum Dot Photocatalysts for Organic Transformations. Journal of Physical Chemistry Letters, 2021, 12, 7180-7193.	4.6	48
47	Ligand Engineering for Mn ²⁺ Doping Control in CsPbCl ₃ Perovskite Nanocrystals via a Quasi-Solid–Solid Cation Exchange Reaction. Chemistry of Materials, 2020, 32, 2489-2500.	6.7	46
48	Fusing Nanowires into Thin Films: Fabrication of Gradedâ€Heterojunction Perovskite Solar Cells with Enhanced Performance. Advanced Energy Materials, 2019, 9, 1900243.	19.5	45
49	Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nature Materials, 2022, 21, 95-102.	27.5	44
50	The effects of monovalent metal cations on the crystal and electronic structures of Cs2MBiCl6 (M =) Tj ETQq0 C	0 (ggBT /C	verjąck 10 Tf
51	Structural distortion and electron redistribution in dual-emitting gold nanoclusters. Nature Communications, 2020, 11, 2897.	12.8	42
52	Cu-Catalyzed Synthesis of CdZnSe–CdZnS Alloy Quantum Dots with Highly Tunable Emission. Chemistry of Materials, 2019, 31, 2635-2643.	6.7	41
53	Building bridges between halide perovskite nanocrystals and thin-film solar cells. Sustainable Energy and Fuels, 2018, 2, 2381-2397.	4.9	37
54	An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles. Nanoscale, 2015, 7, 6851-6858.	5.6	33

#	Article	IF	Citations
55	Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nature Communications, 2015, 6, 6796.	12.8	33
56	Synthesis of lead-free Cs ₄ (Cd _{1â^'x} Mn _x)Bi ₂ Cl ₁₂ (0 ≠ <i>x</i> ≠1) layered double perovskite nanocrystals with controlled Mnâ€"Mn coupling interaction. Nanoscale, 2020, 12, 23191-23199.	5.6	31
57	Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator. Nano Energy, 2020, 67, 104217.	16.0	29
58	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4652-4656.	13.8	28
59	The correlation between phase transition and photoluminescence properties of CsPbX ₃ (X) Tj ETQq1	1.0.7843 4.6	14 rgBT /0 27
60	Self-Assembly of Quantum Dot–Gold Heterodimer Nanocrystals with Orientational Order. Nano Letters, 2018, 18, 5049-5056.	9.1	25
61	Stable, small, specific, low-valency quantum dots for single-molecule imaging. Nanoscale, 2018, 10, 4406-4414.	5.6	20
62	A Divide-and-Conquer Strategy for Quantification of Light Absorption, Scattering, and Emission Properties of Fluorescent Nanomaterials in Solutions. Analytical Chemistry, 2019, 91, 8540-8548.	6.5	20
63	Ultrafast cation doping of perovskite quantum dots in flow. Matter, 2021, 4, 2429-2447.	10.0	20
64	Colloidal synthesis and charge carrier dynamics of Cs4Cd1â°'Cu Sb2Cl12 (0Â≠x ≠1) layered double perovskite nanocrystals. Matter, 2021, 4, 2936-2952.	10.0	20
65	Monolayer Silaneâ€Coated, Waterâ€Soluble Quantum Dots. Small, 2015, 11, 6091-6096.	10.0	19
66	Introducing Manganese-Doped Lead Halide Perovskite Quantum Dots: A Simple Synthesis Illustrating Optoelectronic Properties of Semiconductors. Journal of Chemical Education, 2019, 96, 2300-2307.	2.3	18
67	Colloidal Assembly of Au–Quantum Dot–Au Sandwiched Nanostructures with Strong Plasmon–Exciton Coupling. Journal of Physical Chemistry Letters, 2020, 11, 2449-2456.	4.6	18
68	Thick-Shell CdSe/ZnS/CdZnS/ZnS Core/Shell Quantum Dots for Quantitative Immunoassays. ACS Applied Nano Materials, 2021, 4, 2855-2865.	5.0	17
69	Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures. Nanoscale, 2018, 10, 1038-1046.	5.6	16
70	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie, 2020, 132, 22752-22758.	2.0	16
71	Carrier Transport Dynamics in High Speed Black Phosphorus Photodetectors. ACS Photonics, 2018, 5, 1412-1417.	6.6	15
72	Crystalline Mesoporous Complex Oxides: Porosityâ€Controlled Electromagnetic Response. Advanced Functional Materials, 2020, 30, 1909491.	14.9	15

#	Article	IF	Citations
73	Reversible Photo-Switching of Dual-Color Fluorescent Mn-Doped CdS-ZnS Quantum Dots Modulated by Diarylethene Molecules. Frontiers in Chemistry, 2019, 7, 145.	3.6	13
74	Quantification of the Photon Absorption, Scattering, and On-Resonance Emission Properties of CdSe/CdS Core/Shell Quantum Dots: Effect of Shell Geometry and Volumes. Analytical Chemistry, 2020, 92, 5346-5353.	6. 5	13
75	Synthesis of Ultrathin Perovskite Nanowires via a Postsynthetic Transformation Reaction of Zero-Dimensional Perovskite Nanocrystals. Crystal Growth and Design, 2021, 21, 1924-1930.	3.0	13
76	Synthesis of Water-Soluble 2,2′-Diphenyl-1-Picrylhydrazyl Nanoparticles: A New Standard for Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2009, 131, 12542-12543.	13.7	12
77	Reactive two-component monolayers template bottom-up assembly of nanoparticle arrays on HOPG. Chemical Communications, 2018, 54, 8056-8059.	4.1	12
78	Synthesis of double perovskite and quadruple perovskite nanocrystals through post-synthetic transformation reactions. Chemical Science, 2022, 13, 4874-4883.	7.4	12
79	Pressure-Induced Transformations of Three-Component Heterostructural Nanocrystals with CdS–Au2S Janus Nanoparticles as Hosts and Small Au Nanoparticles as Satellites. ACS Applied Nano Materials, 2019, 2, 6804-6808.	5. O	11
80	Bulk Grain-Boundary Materials from Nanocrystals. CheM, 2021, 7, 509-525.	11.7	10
81	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. Angewandte Chemie, 2018, 130, 4742-4746.	2.0	7
82	Manipulating Charge Transfer from Core to Shell in CdSe/CdS/Au Heterojunction Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48551-48555.	8.0	7
83	Brightening of Dark States in CsPbBr ₃ Quantum Dots Caused by Lightâ€Induced Magnetism. Small, 2021, 17, e2101527.	10.0	5
84	Influence of local structures on the energy transfer efficiencies of quantum-dot films. Physical Review B, 2020, 102, .	3.2	3
85	Excitation wavelength-dependent photoluminescence decay of single quantum dots near plasmonic gold nanoparticles. Journal of Chemical Physics, 2022, 156, 154701.	3.0	3
86	Fast Lifetime Blinking in Compact CdSe/CdS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 15433-15440.	3.1	2
87	New insights to the interactions between amorphous georgite pigment and linseed oil binder that lead to a drastic color change. Inorganica Chimica Acta, 2022, 529, 120661.	2.4	2
88	Editorial: Metal and Semiconductor Nanocrystals. Frontiers in Chemistry, 2019, 7, 310.	3.6	0