Michael Schnekenburger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7444523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of Sulforaphane as an Inducer of Ferroptosis in U-937 Leukemia Cells: Expanding Its Anticancer Potential. Cancers, 2022, 14, 76.	3.7	9
2	Susceptibility of multiple myeloma to B-cell lymphoma 2 family inhibitors. Biochemical Pharmacology, 2021, 188, 114526.	4.4	2
3	Epigenetic mechanisms underlying the therapeutic effects of HDAC inhibitors in chronic myeloid leukemia. Biochemical Pharmacology, 2020, 173, 113698.	4.4	15
4	Human telomerase reverse transcriptase depletion potentiates the growth-inhibitory activity of imatinib in chronic myeloid leukemia stem cells. Cancer Letters, 2020, 469, 468-480.	7.2	8
5	Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells. Clinical Epigenetics, 2020, 12, 69.	4.1	19
6	The HDAC6 inhibitor 7b induces BCR-ABL ubiquitination and downregulation and synergizes with imatinib to trigger apoptosis in chronic myeloid leukemia. Pharmacological Research, 2020, 160, 105058.	7.1	7
7	Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia. Cell Death and Disease, 2020, 11, 109.	6.3	21
8	HDAC6—An Emerging Target Against Chronic Myeloid Leukemia?. Cancers, 2020, 12, 318.	3.7	11
9	Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clinical Epigenetics, 2019, 11, 68.	4.1	30
10	Natural Compounds as Epigenetic Modulators in Cancer. Proceedings (mdpi), 2019, 11, .	0.2	0
11	Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue?. Cancer, 2019, 125, 1612-1628.	4.1	22
12	The dialkyl resorcinol stemphol disrupts calcium homeostasis to trigger programmed immunogenic necrosis in cancer. Cancer Letters, 2018, 416, 109-123.	7.2	20
13	Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacological Research, 2018, 129, 337-356.	7.1	40
14	Synergistic AML Cell Death Induction by Marine Cytotoxin (+)-1(R), 6(S), 1'(R), 6'(S), 11(R), 17(S)-Fistularin-3 and Bcl-2 Inhibitor Venetoclax. Marine Drugs, 2018, 16, 518.	4.6	16
15	The Fungal Metabolite Eurochevalierine, a Sequiterpene Alkaloid, Displays Anti-Cancer Properties through Selective Sirtuin 1/2 Inhibition. Molecules, 2018, 23, 333.	3.8	10
16	Discovery and Characterization of <i>R</i> / <i>S</i> - <i>N</i> -3-Cyanophenyl- <i>N</i> ′-(6- <i>tert</i> -butoxycarbonylamino-3,4-dihydro-2,2-dim a New Histone Deacetylase Class III Inhibitor Exerting Antiproliferative Activity against Cancer Cell Lines. Journal of Medicinal Chemistry, 2017, 60, 4714-4733.	ethyl-2 <i>6.4</i>	H<∕i>-1-benzo 22
17	Synthesis, Enzyme Assays and Molecular Docking Studies of Fluorina ted Bioisosteres of Santacruzamate A as Potential HDAC Tracers. Letters in Drug Design and Discovery, 2017, 14, .	0.7	2
18	Natural Compound Histone Deacetylase Inhibitors (HDACi): Synergy with Inflammatory Signaling	3.8	58

Pathway Modulators and Clinical Applications in Cancer. Molecules, 2016, 21, 1608.

MICHAEL SCHNEKENBURGER

#	Article	IF	CITATIONS
19	4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochemical Pharmacology, 2016, 99, 31-52.	4.4	48
20	Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget, 2016, 7, 24027-24049.	1.8	54
21	Editorial (Thematic Issue: Novel Pharmaceutical Approaches by Natural Compound-Derived Epigenetic) Tj ETQq1 2 Medicinal Chemistry, 2015, 16, 677-679.	l 0.78431 2.1	4 rgBT /Over 3
22	Perspectives in Medicinal Chemistry: DNA Methylation and Demethylation Mechanisms as Therapeutic Targets?. Current Topics in Medicinal Chemistry, 2015, 16, 807-808.	2.1	0
23	The DNA hypomethylating agent, 5â€azaâ€2â€2â€deoxycytidine, enhances tumor cell invasion through a transcriptionâ€dependent modulation of MMPâ€1 expression in human fibrosarcoma cells. Molecular Carcinogenesis, 2015, 54, 24-34.	2.7	14
24	Nutritional Epigenetic Regulators in the Field of Cancer. , 2015, , 393-425.		20
25	Histone deacetylase 6 in health and disease. Epigenomics, 2015, 7, 103-118.	2.1	174
26	Role of Histone Acetylation in Cell Cycle Regulation. Current Topics in Medicinal Chemistry, 2015, 16, 732-744.	2.1	49
27	Epigenetic alterations as a universal feature of cancer hallmarks and a promising target for personalized treatments. Current Topics in Medicinal Chemistry, 2015, 16, 745-776.	2.1	35
28	Dual Induction of Mitochondrial Apoptosis and Senescence in Chronic Myelogenous Leukemia by Myrtucommulone A. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 363-373.	1.7	12
29	Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity. PLoS ONE, 2014, 9, e96941.	2.5	35
30	Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxification toward cancer prevention and diagnosis. Frontiers in Pharmacology, 2014, 5, 170.	3.5	66
31	Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnology Advances, 2014, 32, 1123-1132.	11.7	90
32	The Ah Receptor Recruits IKKα to Its Target Binding Motifs to Phosphorylate Serine-10 in Histone H3 Required for Transcriptional Activation. Toxicological Sciences, 2014, 139, 121-132.	3.1	21
33	Bis(4-hydroxy-2H-chromen-2-one): Synthesis and effects on leukemic cell lines proliferation and NF-κB regulation. Bioorganic and Medicinal Chemistry, 2014, 22, 3008-3015.	3.0	23
34	Antiproliferative and proapoptotic activities of 4-hydroxybenzoic acid-based inhibitors of histone deacetylases. Cancer Letters, 2014, 343, 134-146.	7.2	40
35	Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks. Biochemical Pharmacology, 2014, 92, 299-311.	4.4	17
36	Protein Kinase and HDAC Inhibitors from the Endophytic Fungus <i>Epicoccum nigrum</i> . Journal of Natural Products, 2014, 77, 49-56.	3.0	97

#	Article	IF	CITATIONS
37	Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells. Journal of Medicinal Chemistry, 2014, 57, 701-713.	6.4	111
38	5-aza-2′-deoxycytidine-mediated c-myc Down-regulation Triggers Telomere-dependent Senescence by Regulating Human Telomerase Reverse Transcriptase in Chronic Myeloid Leukemia. Neoplasia, 2014, 16, 511-528.	5.3	39
39	Epigenetic modulators from "The Big Blue― A treasure to fight against cancer. Cancer Letters, 2014, 351, 182-197.	7.2	36
40	Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3797-3801.	2.2	35
41	Epigenetically induced changes in nuclear textural patterns and gelatinase expression in human fibrosarcoma cells. Cell Proliferation, 2013, 46, 127-136.	5.3	12
42	Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncology Reports, 2012, 28, 797-805.	2.6	71
43	Chromatin-modifying agents in anti-cancer therapy. Biochimie, 2012, 94, 2264-2279.	2.6	67
44	Histone deacetylase modulators provided by Mother Nature. Genes and Nutrition, 2012, 7, 357-367.	2.5	60
45	DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochemical Pharmacology, 2012, 83, 858-865.	4.4	49
46	MicroRNAs in cancer management and their modulation by dietary agents. Biochemical Pharmacology, 2012, 83, 1591-1601.	4.4	57
47	Epigenetics Offer New Horizons for Colorectal Cancer Prevention. Current Colorectal Cancer Reports, 2012, 8, 66-81.	0.5	87
48	UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochemical Pharmacology, 2011, 81, 13-23.	4.4	86
49	Sustained exposure to the DNA demethylating agent, 2′-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochemical Pharmacology, 2011, 81, 364-378.	4.4	115
50	Valproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway. Biochemical Pharmacology, 2011, 81, 498-509.	4.4	34
51	Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines. Biochemical Pharmacology, 2011, 81, 1329-1342.	4.4	29
52	COX-2 inhibitors block chemotherapeutic agent-induced apoptosis prior to commitment in hematopoietic cancer cells. Biochemical Pharmacology, 2011, 82, 1277-1290.	4.4	20
53	Natural compounds as inflammation inhibitors. Genes and Nutrition, 2011, 6, 89-92.	2.5	35
54	Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics, 2011, 3, 581-609.	2.1	97

#	Article	IF	CITATIONS
55	Conference Scene: Omic technologies in human disease: extending the network of epigenetic control. Epigenomics, 2011, 3, 539-541.	2.1	2
56	Aryl Hydrocarbon Receptor Ligands of Widely Different Toxic Equivalency Factors Induce Similar Histone Marks in Target Gene Chromatin. Toxicological Sciences, 2011, 121, 123-131.	3.1	39
57	Targeting inflammatory cell signaling mechanisms: a promising road to new therapeutic agents in chemoprevention and cancer therapy. Journal of Experimental Therapeutics and Oncology, 2011, 9, 1-4.	0.5	11
58	Naturally Occurring Regulators of Histone Acetylation/Deacetylation. Current Nutrition and Food Science, 2010, 6, 78-99.	0.6	29
59	Sp proteins play a critical role in histone deacetylase inhibitorâ€mediated derepression of <i>CYP46A1</i> gene transcription. Journal of Neurochemistry, 2010, 113, 418-431.	3.9	37
60	Tumor necrosis factor α induces γ-glutamyltransferase expression via nuclear factor-κB in cooperation with Sp1. Biochemical Pharmacology, 2009, 77, 397-411.	4.4	37
61	Genomewide Analysis of Aryl Hydrocarbon Receptor Binding Targets Reveals an Extensive Array of Gene Clusters that Control Morphogenetic and Developmental Programs. Environmental Health Perspectives, 2009, 117, 1139-1146.	6.0	90
62	Repression of Ah receptor and induction of transforming growth factor-Î ² genes in DEN-induced mouse liver tumors. Toxicology, 2008, 246, 242-247.	4.2	27
63	Chromium Cross-Links Histone Deacetylase 1-DNA Methyltransferase 1 Complexes to Chromatin, Inhibiting Histone-Remodeling Marks Critical for Transcriptional Activation. Molecular and Cellular Biology, 2007, 27, 7089-7101.	2.3	138
64	Long term low-dose arsenic exposure induces loss of DNA methylation. Biochemical and Biophysical Research Communications, 2007, 352, 188-192.	2.1	272
65	HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 569-578.	2.4	111
66	Tumor necrosis factor alpha inhibits aclacinomycin A-induced erythroid differentiation of K562 cells via GATA-1. Cancer Letters, 2006, 240, 203-212.	7.2	17
67	Transcriptional and post-transcriptional regulation of glutathione S-transferase P1 expression during butyric acid-induced differentiation of K562 cells. Leukemia Research, 2006, 30, 561-568.	0.8	16
68	Chemopreventive and therapeutic effects of curcumin. Cancer Letters, 2005, 223, 181-190.	7.2	771
69	Regulation of glutathione S-transferase P1-1 gene expression by NF-kappaB in tumor necrosis factor alpha-treated K562 leukemia cells. Biochemical Pharmacology, 2004, 67, 1227-1238.	4.4	44
70	Increased glutathione S-transferase P1-1 expression by mRNA stabilization in hemin-induced differentiation of K562 cells. Biochemical Pharmacology, 2004, 68, 1269-1277.	4.4	20
71	Effect of chemopreventive agents on glutathione S-transferase P1-1 gene expression mechanisms via activating protein 1 and nuclear factor kappaB inhibition. Biochemical Pharmacology, 2004, 68, 1101-1111.	4.4	75
72	Curcumin Stability and Its Effect on GlutathioneS-Transferase P1-1 mRNA Expression in K562 Cells. Annals of the New York Academy of Sciences, 2004, 1030, 442-448.	3.8	25

#	Article	IF	CITATIONS
73	GATAâ€1: Friends, Brothers, and Coworkers. Annals of the New York Academy of Sciences, 2004, 1030, 537-554.	3.8	56
74	Expression of glutathione S-transferase P1-1 in leukemic cells is regulated by inducible AP-1 binding. Cancer Letters, 2004, 216, 207-219.	7.2	36
75	An Introduction to the Molecular Mechanisms of Apoptosis. Annals of the New York Academy of Sciences, 2003, 1010, 1-8.	3.8	65
76	Curcumin-Induced Cell Death in Two Leukemia Cell Lines: K562 and Jurkat. Annals of the New York Academy of Sciences, 2003, 1010, 389-392.	3.8	43
77	Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochemical Pharmacology, 2003, 66, 1475-1483.	4.4	124
78	Expression of glutathione S-transferase P1-1 in differentiating K562: role of GATA-1. Biochemical and Biophysical Research Communications, 2003, 311, 815-821.	2.1	16