Chunyu Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7443026/publications.pdf Version: 2024-02-01

Снимун Dh

#	Article	IF	CITATIONS
1	<i>ï€</i> â€Conjugation Induced Anchoring of Ferrocene on Graphdiyne Enable Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Advanced Science, 2022, 9, e2103964.	11.2	9
2	Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy, 2022, 93, 106810.	16.0	12
3	Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	67
4	Deactivation and regeneration of a benchmark Pt/C catalyst toward oxygen reduction reaction in the presence of poisonous SO ₂ and NO. Catalysis Science and Technology, 2022, 12, 2929-2934.	4.1	8
5	Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Etherâ€Based Electrolytes. Advanced Functional Materials, 2022, 32, .	14.9	24
6	Singleâ€Atom Tailored Hierarchical Transition Metal Oxide Nanocages for Efficient Lithium Storage. Small, 2022, 18, e2200367.	10.0	6
7	A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Applied Catalysis B: Environmental, 2022, 311, 121357.	20.2	75
8	Developing a Double Protection Strategy for High-Performance Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. ACS Applied Energy Materials, 2022, 5, 6401-6409.	5.1	6
9	Pt/C-TiO2 as Oxygen Reduction Electrocatalysts against Sulfur Poisoning. Catalysts, 2022, 12, 571.	3.5	3
10	Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode. Energy Storage Materials, 2022, 50, 380-386.	18.0	14
11	DNA Helix Structure Inspired Flexible Lithium-Ion Batteries with High Spiral Deformability and Long-Lived Cyclic Stability. Nano Letters, 2022, 22, 5553-5560.	9.1	8
12	Surface-Phase Engineering via Lanthanum Doping Enables Enhanced Electrochemical Performance of Li-Rich Layered Cathode. ACS Applied Energy Materials, 2022, 5, 9648-9656.	5.1	8
13	A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. Journal of Energy Chemistry, 2021, 54, 217-224.	12.9	49
14	Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy, 2021, 81, 105635.	16.0	52
15	Proof-of-concept fabrication of carbon structure in Cu–N–C catalysts of both high ORR activity and stability. Carbon, 2021, 174, 683-692.	10.3	22
16	Novel carbon structures as highly stable supports for electrocatalysts in acid media: regulating the oxygen functionalization behavior of carbon. New Journal of Chemistry, 2021, 45, 10802-10809.	2.8	2
17	Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. ACS Applied Materials & Interfaces, 2021, 13, 4093-4101.	8.0	34
18	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. Advanced Functional Materials, 2021, 31, 2010526.	14.9	46

#	Article	IF	CITATIONS
19	Engineering Molecular Polymerization for Templateâ€Free SiO <i>_x</i> /C Hollow Spheres as Ultrastable Anodes in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101145.	14.9	74
20	Formation of an Artificial Mg ²⁺ -Permeable Interphase on Mg Anodes Compatible with Ether and Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 24565-24574.	8.0	36
21	An Interphase-enhanced Liquid Na-K Anode for Dendrite-free Alkali Metal Batteries Enabled by SiCl4 Electrolyte Additive. Energy Storage Materials, 2021, 37, 199-206.	18.0	25
22	LiNi0.5Co0.2Mn0.3O2/graphite batteries storing at high temperature: Capacity fading and raveling of aging mechanisms. Journal of Power Sources, 2021, 496, 229858.	7.8	16
23	Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28252-28260.	8.0	19
24	Reâ€Looking into the Active Moieties of Metal Xâ€ides (X― = Phosph― Sulf― Nitr― and Carbâ€) To Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2102918.	ward 14.9	68
25	Deactivated Pt Electrocatalysts for the Oxygen Reduction Reaction: The Regeneration Mechanism and a Regenerative Protocol. ACS Catalysis, 2021, 11, 9293-9299.	11.2	11
26	Tailoring Porous Transition Metal Oxide for High-Performance Lithium Storage. Journal of Physical Chemistry C, 2021, 125, 22435-22445.	3.1	7
27	Photoelectrochemistry-driven selective hydroxyl oxidation of polyols: Synergy between Au nanoparticles and C3N4 nanosheets. Chem Catalysis, 2021, 1, 1260-1272.	6.1	15
28	An artificial interphase enables the use of Mg(TFSI)2-based electrolytes in magnesium metal batteries. Chemical Engineering Journal, 2021, 426, 130751.	12.7	34
29	Monovacancy Coupled Pyridinic N Site Enables Surging Oxygen Reduction Activity of Metal-Free CNx Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 1264-1271.	6.7	8
30	Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nature Communications, 2021, 12, 6335.	12.8	95
31	Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chemical Engineering Journal, 2020, 382, 123046.	12.7	12
32	A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. Journal of Materials Chemistry A, 2020, 8, 2066-2073.	10.3	75
33	Improving electrochemical performance of Nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions. Electrochimica Acta, 2020, 332, 135507.	5.2	18
34	Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries. Chemical Engineering Science, 2020, 214, 115413.	3.8	18
35	Unraveling the Relationship between Ti ⁴⁺ Doping and Li ⁺ Mobility Enhancement in Ti ⁴⁺ Doped Li ₃ V ₂ (PO ₄) ₃ . ACS Applied Energy Materials, 2020, 3, 715-722.	5.1	11
36	Sulfur Dioxide-Tolerant Bimetallic PtRu Catalyst toward Oxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 1295-1301.	6.7	33

#	Article	IF	CITATIONS
37	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	18.0	56
38	Enabling Highly Stable Li–O ₂ Batteries with Full Discharge–Charge Capability: Tl Binder- and Carbon-Free IrNi Nanosheet Cathode. ACS Sustainable Chemistry and Engineering, 2C 16115-16123.	ne Porous 120, 8, 6.7	4
39	Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy, 2020, 78, 105366.	16.0	86
4(Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li–O ₂ Battery Discharge. Journal of Physical Chemistry Letters, 2020, 11, 7028-70	134. 4.6	14
41	Polyvinylpyrrolidoneâ€Coordinated Singleâ€Site Platinum Catalyst Exhibits High Activity for Hydro Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15902-15907.	ogen 13.8	80
42	Bifunctional LaMn _{0.3} Co _{0.7} O ₃ Perovskite Oxide Catalyst f Oxygen Reduction and Evolution Reactions: The Optimized e _g Electronic Structures Manganese Dopant. ACS Applied Materials & Interfaces, 2020, 12, 24717-24725.	For by 8.0	85
48	Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomi Engineering. ACS Catalysis, 2020, 10, 4205-4214.	cal 11.2	98
44	Perovskite LaCo _{<i>x</i>} Mn _{1–<i>x</i>} O _{3â~σ} with Tuna Surface Structures as Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materia Interfaces, 2020, 12, 10452-10460.	able Defect and Is & 8.0	23
45	A porous N-doped carbon aggregate as sulfur host for lithium-sulfur batteries. Ionics, 2019, 25, 2131-2138.	2.4	8
46	Scalable submicron/micron silicon particles stabilized in a robust graphite-carbon architecture for enhanced lithium storage. Journal of Colloid and Interface Science, 2019, 555, 783-790.	9.4	22
47	Trimetallic Pt–Pd–Ni octahedral nanocages with subnanometer thick-wall towards high oxyge reduction reaction. Nano Energy, 2019, 64, 103890.	en 16.0	34
48	Unraveling the Origins of the "Unreactive Core―in Conversion Electrodes to Trigger High So Electrochemistry. ACS Energy Letters, 2019, 4, 2007-2012.	dium-lon 17.4	33
49	Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Na Energy, 2019, 66, 104179.	no 16.0	45
50	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. A Applied Materials & 2019, 11, 41258-41266.	ACS 8.0	50
51	Layer-by-Layer Engineered Silicon-Based Sandwich Nanomat as Flexible Anode for Lithium-Ion Batt ACS Applied Materials & Interfaces, 2019, 11, 39970-39978.	teries. 8.0	26
52	High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy, 2019, 66, 104088.	16.0	138
58	Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxyg reduction reaction. Journal of Materials Chemistry A, 2019, 7, 24830-24836.	en 10.3	26
54	Enhancing high-voltage performances of nickel-based cathode material via aluminum and progres concentration gradient modification. Electrochimica Acta, 2019, 317, 459-467.	sive 5.2	10

#	Article	IF	CITATIONS
55	Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios. Journal of Power Sources, 2019, 433, 126690.	7.8	18
56	Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. Chemical Engineering Journal, 2019, 375, 121923.	12.7	32
57	Lithiumâ€lon Batteries: Radially Oriented Singleâ€Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€lon Batteries (Adv. Energy Mater. 15/2019). Advanced Energy Materials, 2019, 9, 1970051.	19.5	14
58	Investigating the Structure of an Active Material–Carbon Interface in the Monoclinic Li ₃ V ₂ (PO ₄) ₃ /C Composite Cathode. ACS Applied Energy Materials, 2019, 2, 3692-3702.	5.1	9
59	Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7728-7735.	10.3	61
60	Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. Electrochimica Acta, 2019, 306, 590-598.	5.2	41
61	Improved Electrochemical Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material by Coating of Graphene Nanodots. Journal of the Electrochemical Society, 2019, 166, A1038-A1044.	2.9	19
62	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Applied Surface Science, 2019, 485, 41-47.	6.1	22
63	A quasi-solid-state Li–S battery with high energy density, superior stability and safety. Journal of Materials Chemistry A, 2019, 7, 6533-6542.	10.3	42
64	Radially Oriented Singleâ€Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803963.	19.5	240
65	Tiâ€Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small, 2019, 15, e1904740.	10.0	121
66	Enhanced Electrochemical Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material via Li ₂ TiO ₃ Nanoparticles Coating. Journal of the Electrochemical Society, 2019, 166, A143-A150.	2.9	27
67	Superior catalytic performance and CO tolerance of Ru@Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction. Applied Surface Science, 2019, 473, 943-950.	6.1	47
68	A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2019, 777, 190-197.	5.5	51
69	Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon, 2019, 143, 878-889.	10.3	70
70	Enhanced Methanol Oxidation in Acid Media on Pt/S, P Coâ€doped Graphene with 3D Porous Network Structure Engineering. ChemElectroChem, 2019, 6, 1157-1165.	3.4	10
71	A multifunctional silicotungstic acid-modified Li-rich manganese-based cathode material with excellent electrochemical properties. Journal of Solid State Electrochemistry, 2019, 23, 101-108.	2.5	1
72	ZIFâ€8 with Ferrocene Encapsulated: A Promising Precursor to Singleâ€Atom Fe Embedded Nitrogenâ€Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction. Small, 2018, 14, e1704282.	10.0	202

#	Article	IF	CITATIONS
73	Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries. Journal of Alloys and Compounds, 2018, 752, 8-13.	5.5	21
74	Unravelling the Enhanced Highâ€Temperature Performance of Lithiumâ€Rich Oxide Cathode with Methyl Diphenylphosphinite as Electrolyte Additive. ChemElectroChem, 2018, 5, 1569-1575.	3.4	29
75	Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. Journal of Power Sources, 2018, 381, 156-163.	7.8	80
76	A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chemical Engineering Journal, 2018, 341, 37-46.	12.7	95
77	3D hierarchical Co/CoO/C nanocomposites with mesoporous microsheets grown on nickel foam as cathodes for Li-O2 batteries. Journal of Alloys and Compounds, 2018, 749, 378-384.	5.5	18
78	Probing Battery Electrochemistry with In Operando Synchrotron Xâ€Ray Imaging Techniques. Small Methods, 2018, 2, 1700293.	8.6	52
79	Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Materials, 2018, 11, 197-204.	18.0	117
80	State of health diagnosis model for lithium ion batteries based onÂreal-time impedance and open circuit voltage parameters identification method. Energy, 2018, 144, 647-656.	8.8	69
81	Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. Nano Energy, 2018, 43, 184-191.	16.0	61
82	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 20725-20736.	10.3	22
83	Toward Promising Turnkey Solution for Next-Generation Lithium Ion Batteries: Scale Preparation, Fading Analysis, and Enhanced Performance of Microsized Si/C Composites. ACS Applied Energy Materials, 2018, 1, 6977-6985.	5.1	10
84	Bifunctional electrolyte additive KI to improve the cycling performance of Li–O ₂ batteries. New Journal of Chemistry, 2018, 42, 17311-17316.	2.8	2
85	Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries. Carbon, 2018, 140, 385-393.	10.3	31
86	Accelerated Aging Analysis on Cycle Life of LiFePO ₄ /Graphite Batteries Based on Different Rates. ChemElectroChem, 2018, 5, 2301-2309.	3.4	10
87	Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation. Electrochimica Acta, 2018, 285, 202-213.	5.2	38
88	Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNb ₂ O ₇ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 27056-27062.	8.0	47
89	Accelerated aging and degradation mechanism of LiFePO ₄ /graphite batteries cycled at high discharge rates. RSC Advances, 2018, 8, 25695-25703.	3.6	40
90	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29638-29646.	8.0	63

#	Article	IF	CITATIONS
91	Electrocatalytic valorisation of biomass derived chemicals. Catalysis Science and Technology, 2018, 8, 3216-3232.	4.1	105
92	Superior performance of ordered macroporous TiNb 2 O 7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy, 2017, 34, 15-25.	16.0	351
93	Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. Journal of Power Sources, 2017, 347, 170-177.	7.8	129
94	Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy, 2017, 34, 215-223.	16.0	94
95	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 10936-10945.	10.3	87
96	Electronically Conductive Sb-doped SnO 2 Nanoparticles Coated LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries. Electrochimica Acta, 2017, 236, 273-279.	5.2	61
97	Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: A promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries. Carbon, 2017, 118, 139-147.	10.3	50
98	Selective Surface Engineering of Heterogeneous Nanostructures: In Situ Unraveling of the Catalytic Mechanism on Pt–Au Catalyst. ACS Catalysis, 2017, 7, 7923-7929.	11.2	37
99	Self-doping Ti1-Nb2+O7 anode material for lithium-ion battery and its electrochemical performance. Journal of Alloys and Compounds, 2017, 728, 534-540.	5.5	40
100	Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles. Chemical Physics Letters, 2017, 687, 1-8.	2.6	45
101	A Mild Surface Washing Method Using Protonated Polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 Material of Lithium Ion Batteries. Electrochimica Acta, 2017, 248, 534-540.	5.2	89
102	Clew-like N-doped multiwalled carbon nanotube aggregates derived from metal-organic complexes for lithium-sulfur batteries. Carbon, 2017, 122, 635-642.	10.3	39
103	High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. Journal of Power Sources, 2017, 361, 80-86.	7.8	139
104	Heterogeneous Nanostructure of Ternary PtRu-Au/C Nano-catalyst Towards Formic Acid Oxidation. Electrochemistry, 2017, 85, 133-135.	1.4	3
105	Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochimica Acta, 2016, 212, 313-321.	5.2	60
106	A Novel One-dimensional Reduced Graphene Oxide/Sulfur Nanoscroll Material and its Application in Lithium Sulfur Batteries. Electrochimica Acta, 2016, 222, 1861-1869.	5.2	31
107	Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: the Effects of Potentiodynamic Parameters. Electrocatalysis, 2016, 7, 305-316.	3.0	9
108	Effect of short-time external short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/mesocarbon microbeads battery. Journal of Power Sources, 2016, 318, 154-162.	7.8	30

#	Article	IF	CITATIONS
109	Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation. Electrochimica Acta, 2016, 217, 203-209.	5.2	36
110	Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. Journal of Power Sources, 2016, 331, 91-99.	7.8	95
111	A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: From nanoparticles to support materials. Chinese Journal of Catalysis, 2016, 37, 1025-1036.	14.0	14
112	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials, 2016, 28, 5274-5281.	6.7	46
113	The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries. Applied Energy, 2016, 177, 1-10.	10.1	43
114	Metal–Organic Coordination Networks: Prussian Blue and Its Synergy with Pt Nanoparticles to Enhance Oxygen Reduction Kinetics. ACS Applied Materials & Interfaces, 2016, 8, 15250-15257.	8.0	44
115	Concentration Gradient Pd-Ir-Ni/C Electrocatalyst with Enhanced Activity and Methanol Tolerance for Oxygen Reduction Reaction in Acidic Medium. Electrochimica Acta, 2016, 192, 177-187.	5.2	21
116	Recovery Strategy and Mechanism of Aged Lithium Ion Batteries after Shallow Depth of Discharge at Elevated Temperature. ACS Applied Materials & Interfaces, 2016, 8, 5234-5242.	8.0	17
117	Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries. Journal of Power Sources, 2016, 312, 216-222.	7.8	31
118	Tin dioxide facilitated truncated octahedral Pt ₃ Ni alloy catalyst: synthesis and ultra highly active and durable electrocatalysts for oxygen reduction reaction. RSC Advances, 2016, 6, 26323-26328.	3.6	8
119	Composition optimization of ternary palladium–iridium–iron alloy catalysts for oxygen reduction reaction in acid medium. RSC Advances, 2016, 6, 22754-22763.	3.6	14
120	Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum. Electrochimica Acta, 2016, 195, 166-174.	5.2	16
121	Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge. Journal of Power Sources, 2015, 279, 123-132.	7.8	87
122	Facile synthesis of Pt3Ni alloy nanourchins by temperature modulation and their enhanced electrocatalytic properties. Journal of Alloys and Compounds, 2015, 645, 309-316.	5.5	17
123	A palladium-doped ceria@carbon core–sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions. Nanoscale, 2015, 7, 13656-13662.	5.6	22
124	Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 1185-1191.	5.2	61
125	Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction. Journal of Power Sources, 2015, 300, 245-253.	7.8	79
126	Highly efficient anode catalyst with a Ni@PdPt core–shell nanostructure for methanol electrooxidation in alkaline media. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 1101-1107.	4.9	3

#	Article	IF	CITATIONS
127	Facile synthesis of nanostructured TiNb ₂ O ₇ anode materials with superior performance for high-rate lithium ion batteries. Chemical Communications, 2015, 51, 17293-17296.	4.1	108
128	Electrochemical performance degeneration mechanism of LiCoO ₂ with high state of charge during long-term charge/discharge cycling. RSC Advances, 2015, 5, 81235-81242.	3.6	31
129	Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery. Journal of Power Sources, 2015, 293, 1006-1015.	7.8	88
130	Lithium-rich Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ oxide coated by Li ₃ PO ₄ and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2634-2641.	10.3	103
131	Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation. Journal of Power Sources, 2014, 263, 310-314.	7.8	38
132	Pd-around-CeO _{2â~'x} hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism. Journal of Materials Chemistry A, 2014, 2, 1429-1435.	10.3	58
133	Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. RSC Advances, 2014, 4, 26335-26341.	3.6	36
134	Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Applied Materials & Interfaces, 2014, 6, 14043-14049.	8.0	49
135	An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 15640.	10.3	75
136	Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. Journal of Power Sources, 2014, 268, 816-823.	7.8	41
137	Lithium Compound Deposition on Mesocarbon Microbead Anode of Lithium Ion Batteries after Long-Term Cycling. ACS Applied Materials & Interfaces, 2014, 6, 12962-12970.	8.0	29
138	Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process. Nano Letters, 2013, 13, 3824-3830.	9.1	353
139	Platinum-based intermetallic nanotubes with a core–shell structure as highly active and durable catalysts for fuel cell applications. Journal of Power Sources, 2013, 240, 630-635.	7.8	43
140	Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation. Journal of Catalysis, 2012, 295, 217-222.	6.2	68
141	The influence of anode diffusion layer on the performance of direct dimethyl ether fuel cell. International Journal of Energy Research, 2012, 36, 886-890.	4.5	5
142	Covalently-functionalizing synthesis of Si@C core–shell nanocomposites as high-capacity anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 15692.	6.7	62
143	Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy and Environmental Science, 2011, 4, 1037.	30.8	80
144	SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells. Applied Surface Science, 2011, 257, 2371-2376.	6.1	9

#	Article	IF	CITATIONS
145	Effect, mechanism and recovery of nitrogen oxides poisoning on oxygen reduction reaction at Pt/C catalysts. Journal of Power Sources, 2011, 196, 620-626.	7.8	41
146	Investigation of a novel MEA for direct dimethyl ether fuel cell. Electrochemistry Communications, 2008, 10, 238-241.	4.7	14