
Marianne Koritzinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7442772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repurposing Itraconazole and Hydroxychloroquine to Target Lysosomal Homeostasis in Epithelial Ovarian Cancer. Cancer Research Communications, 2022, 2, 293-306.	0.7	4
2	Translational Control by 4E-BP1/2 Suppressor Proteins Regulates Mitochondrial Biosynthesis and Function during CD8 ⁺ T Cell Proliferation. Journal of Immunology, 2022, 208, 2702-2712.	0.4	0
3	Oxygen-independent disulfide bond formation in VEGF-A and CA9. Journal of Biological Chemistry, 2021, 296, 100505.	1.6	5
4	p38 MAPK Inhibition Mitigates Hypoxia-Induced AR Signaling in Castration-Resistant Prostate Cancer. Cancers, 2021, 13, 831.	1.7	16
5	Emergence of Enzalutamide Resistance in Prostate Cancer is Associated with BCL-2 and IKKB Dependencies. Clinical Cancer Research, 2021, 27, 2340-2351.	3.2	10
6	NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4. Science Advances, 2021, 7, .	4.7	15
7	Mammary epithelial cells have lineage-rooted metabolic identities. Nature Metabolism, 2021, 3, 665-681.	5.1	24
8	Strategic Training in Transdisciplinary Radiation Science for the 21st Century (STARS21): 15-Year Evaluation of an Innovative Research Training Program. International Journal of Radiation Oncology Biology Physics, 2021, 110, 656-666.	0.4	2
9	Metabolic Regulation of Hippocampal Neuroprogenitor Apoptosis After Irradiation. Journal of Neuropathology and Experimental Neurology, 2020, 79, 325-335.	0.9	2
10	Modeling Cellular Response in Large-Scale Radiogenomic Databases to Advance Precision Radiotherapy. Cancer Research, 2019, 79, 6227-6237.	0.4	23
11	Identifying the murine mammary cell target of metformin exposure. Communications Biology, 2019, 2, 192.	2.0	8
12	The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer. Molecular Cancer Research, 2018, 16, 682-695.	1.5	24
13	Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. International Journal of Cancer, 2018, 143, 1017-1028.	2.3	39
14	Molecular targeting of hypoxia in radiotherapy. Advanced Drug Delivery Reviews, 2017, 109, 45-62.	6.6	146
15	MATE2 Expression Is Associated with Cancer Cell Response to Metformin. PLoS ONE, 2016, 11, e0165214.	1.1	25
16	Hypoxia and Predicting Radiation Response. Seminars in Radiation Oncology, 2015, 25, 260-272.	1.0	73
17	The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10774-10779.	3.3	119
18	Identification of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs. Cancer Research. 2015. 75. 4211-4223.	0.4	65

#	Article	IF	CITATIONS
19	Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2015, 93, 454-464.	0.4	94
20	Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 689-721.	2.5	93
21	Hypoxia Provokes Base Excision Repair Changes and a Repair-Deficient, Mutator Phenotype in Colorectal Cancer Cells. Molecular Cancer Research, 2014, 12, 1407-1415.	1.5	47
22	Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nature Communications, 2014, 5, 5203.	5.8	195
23	Post-transcriptional regulation of MRE11 expression in muscle-invasive bladder tumours. Oncotarget, 2014, 5, 993-1003.	0.8	12
24	New small molecule inhibitors of UPR activation demonstrate that PERK, but not IRE1α signaling is essential for promoting adaptation and survival to hypoxia. Radiotherapy and Oncology, 2013, 108, 541-547.	0.3	41
25	Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiotherapy and Oncology, 2013, 108, 446-450.	0.3	41
26	The Roles of Reactive Oxygen Species and Autophagy in Mediating the Tolerance of Tumor Cells to Cycling Hypoxia. Seminars in Radiation Oncology, 2013, 23, 252-261.	1.0	41
27	Hypoxic Activation of the PERK/elF2α Arm of the Unfolded Protein Response Promotes Metastasis through Induction of LAMP3. Clinical Cancer Research, 2013, 19, 6126-6137.	3.2	105
28	PERK/elF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4622-4627.	3.3	193
29	Reprogramming Metabolism with Metformin Improves Tumor Oxygenation and Radiotherapy Response. Clinical Cancer Research, 2013, 19, 6741-6750.	3.2	268
30	Two phases of disulfide bond formation have differing requirements for oxygen. Journal of Cell Biology, 2013, 203, 615-627.	2.3	113
31	The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer. Radiotherapy and Oncology, 2012, 102, 436-443.	0.3	50
32	Deregulation of cap-dependent mRNA translation increases tumour radiosensitivity through reduction of the hypoxic fraction. Radiotherapy and Oncology, 2011, 99, 385-391.	0.3	21
33	AMPK regulates metabolism and survival in response to ionizing radiation. Radiotherapy and Oncology, 2011, 99, 293-299.	0.3	53
34	Translational control is a major contributor to hypoxia induced gene expression. Radiotherapy and Oncology, 2011, 99, 379-384.	0.3	37
35	The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. Journal of Clinical Investigation, 2010, 120, 127-141.	3.9	675
36	Hypoxia-induced Expression of Carbonic Anhydrase 9 Is Dependent on the Unfolded Protein Response. Journal of Biological Chemistry, 2009, 284, 24204-24212.	1.6	57

#	Article	IF	CITATIONS
37	Inhibition of 4E-BP1 Sensitizes U87 Glioblastoma Xenograft Tumors to Irradiation by Decreasing Hypoxia Tolerance. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1219-1227.	0.4	36
38	Deficient carbonic anhydrase 9 expression in UPR-impaired cells is associated with reduced survival in an acidic microenvironment. Radiotherapy and Oncology, 2009, 92, 437-442.	0.3	23
39	Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiotherapy and Oncology, 2009, 92, 411-416.	0.3	130
40	Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiotherapy and Oncology, 2009, 92, 450-459.	0.3	86
41	The mTOR target 4Eâ€BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency. Proteomics, 2008, 8, 1019-1028.	1.3	45
42	Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Reviews Cancer, 2008, 8, 851-864.	12.8	787
43	Chronic Hypoxia Decreases Synthesis of Homologous Recombination Proteins to Offset Chemoresistance and Radioresistance. Cancer Research, 2008, 68, 605-614.	0.4	286
44	Hypoxia and Regulation of Messenger RNA Translation. Methods in Enzymology, 2007, 435, 247-273.	0.4	45
45	Regulation of Cited2 expression provides a functional link between translational and transcriptional responses during hypoxia. Radiotherapy and Oncology, 2007, 83, 346-352.	0.3	24
46	Proteomic analysis of gene expression following hypoxia and reoxygenation reveals proteins involved in the recovery from endoplasmic reticulum and oxidative stress. Radiotherapy and Oncology, 2007, 83, 340-345.	0.3	21
47	Phosphorylation of eIF2α is required for mRNA translation inhibition and survival during moderate hypoxia. Radiotherapy and Oncology, 2007, 83, 353-361.	0.3	54
48	Patterns of tumor oxygenation and their influence on the cellular hypoxic response and hypoxia-directed therapies. Drug Resistance Updates, 2006, 9, 185-197.	6.5	37
49	Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO Journal, 2006, 25, 1114-1125.	3.5	328
50	Translational control of gene expression during hypoxia. Cancer Biology and Therapy, 2006, 5, 749-755.	1.5	126
51	ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 2005, 24, 3470-3481.	3.5	634
52	The hypoxic proteome is influenced by gene-specific changes in mRNA translation. Radiotherapy and Oncology, 2005, 76, 177-186.	0.3	105
53	Control of the hypoxic response through regulation of mRNA translation. Seminars in Cell and Developmental Biology, 2005, 16, 487-501.	2.3	141
54	Hypoxia-Mediated Down-Regulation of Bid and Bax in Tumors Occurs via Hypoxia-Inducible Factor 1-Dependent and -Independent Mechanisms and Contributes to Drug Resistance. Molecular and Cellular Biology, 2004, 24, 2875-2889.	1.1	355

#	Article	IF	CITATIONS
55	Modulation of cell death in the tumor microenvironment. Seminars in Radiation Oncology, 2003, 13, 31-41.	1.0	91
56	Regulation of Protein Synthesis by Hypoxia via Activation of the Endoplasmic Reticulum Kinase PERK and Phosphorylation of the Translation Initiation Factor eIF2α. Molecular and Cellular Biology, 2002, 22, 7405-7416.	1.1	606
57	Identification of Acquired Notch3 Dependency in Metastatic Head and Neck Cancer. SSRN Electronic Journal, 0, , .	0.4	0