
John F Hancock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter, 2021, 17, 288-297.	1.2	66
2	Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. Journal of Cell Biology, 2021, 220, .	2.3	37
3	Super-Resolution Imaging and Spatial Analysis of RAS on Intact Plasma Membrane Sheets. Methods in Molecular Biology, 2021, 2262, 217-232.	0.4	5
4	The KRAS and other prenylated polybasic domain membrane anchors recognize phosphatidylserine acyl chain structure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
5	Monoubiquitination of KRAS at Lysine104 and Lysine147 Modulates Its Dynamics and Interaction with Partner Proteins. Journal of Physical Chemistry B, 2021, 125, 4681-4691.	1.2	3
6	Regulation of longevity by depolarization-induced activation of PLC-β–IP ₃ R signaling in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
7	Scaffold repurposing of fendiline: Identification of potent KRAS plasma membrane localization inhibitors. European Journal of Medicinal Chemistry, 2021, 217, 113381.	2.6	7
8	RAS Nanoclusters Selectively Sort Distinct Lipid Headgroups and Acyl Chains. Frontiers in Molecular Biosciences, 2021, 8, 686338.	1.6	12
9	p53 mitigates the effects of oncogenic HRAS in urothelial cells via the repression of MCOLN1. IScience, 2021, 24, 102701.	1.9	5
10	Osimertinib-resistant NSCLC cells activate ERBB2 and YAP/TAZ and are killed by neratinib. Biochemical Pharmacology, 2021, 190, 114642.	2.0	12
11	The development of multi-kinase inhibitors as pancreatic cancer therapeutics. Anti-Cancer Drugs, 2021, 32, 779-785.	0.7	2
12	Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nature Communications, 2021, 12, 5248.	5.8	24
13	Lipid Profiles of RAS Nanoclusters Regulate RAS Function. Biomolecules, 2021, 11, 1439.	1.8	13
14	Building insights into KRAS signaling complexes. Nature Structural and Molecular Biology, 2021, 28, 773-774.	3.6	3
15	Components of the phosphatidylserine endoplasmic reticulum to plasma membrane transport mechanism as targets for KRAS inhibition in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
16	Neratinib degrades MST4 via autophagy that reduces membrane stiffness and is essential for the inactivation of PI3K, ERK1/2, and YAP/TAZ signaling. Journal of Cellular Physiology, 2020, 235, 7889-7899.	2.0	27
17	Enhanced signaling via ERBB3/PI3K plays a compensatory survival role in pancreatic tumor cells exposed to [neratinib + valproate]. Cellular Signalling, 2020, 68, 109525.	1.7	6
18	Dynamics of Oncogenic KRAS Mutants on Bilayer Surfaces. Biophysical Journal, 2020, 118, 498a.	0.2	0

#	Article	IF	CITATIONS
19	Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Frontiers in Oncology, 2020, 10, 22.	1.3	7
20	(Curcumin+sildenafil) enhances the efficacy of 5FU and antiâ€PD1 therapies in vivo. Journal of Cellular Physiology, 2020, 235, 6862-6874.	2.0	29
21	RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochemical Journal, 2020, 477, 2893-2919.	1.7	12
22	Identification of EGFR and RAS Inhibitors using Caenorhabditis elegans . Journal of Visualized Experiments, 2020, , .	0.2	3
23	Abstract 1085: Interrogating the RAS interactome identifies EFR3A as a novel enhancer of RAS oncogenesis. , 2020, , .		1
24	Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene, 2019, 38, 5890-5904.	2.6	63
25	Acylpeptide hydrolase is a novel regulator of KRAS plasma membrane localization and function. Journal of Cell Science, 2019, 132, .	1.2	16
26	Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling. Molecular Cell, 2019, 76, 872-884.e5.	4.5	76
27	Signaling alterations caused by drugs and autophagy. Cellular Signalling, 2019, 64, 109416.	1.7	20
28	Three distinct regions of cRaf kinase domain interact with membrane. Scientific Reports, 2019, 9, 2057.	1.6	9
29	Discovery of High-Affinity Noncovalent Allosteric KRAS Inhibitors That Disrupt Effector Binding. ACS Omega, 2019, 4, 2921-2930.	1.6	67
30	HRASâ€driven cancer cells are vulnerable to TRPML1 inhibition. EMBO Reports, 2019, 20, .	2.0	59
31	Neratinib augments the lethality of [regorafenib + sildenafil]. Journal of Cellular Physiology, 2019, 234, 4874-4887.	2.0	32
32	Neratinib and entinostat combine to rapidly reduce the expression of K-RAS, N-RAS, Cα _q and Cα ₁₁ and kill uveal melanoma cells. Cancer Biology and Therapy, 2019, 20, 700-710.	1.5	37
33	Dynamics of Membrane-Bound G12V-KRAS from Simulations and Single-Molecule FRET in Native Nanodiscs. Biophysical Journal, 2019, 116, 179-183.	0.2	56
34	Kinase inhibitors: look beyond the label on the bottle. , 2019, 2, 1032-1043.		0
35	Targeting plasma membrane phosphatidylserine content to inhibit oncogenic KRAS function. Life Science Alliance, 2019, 2, e201900431.	1.3	29
36	Ras and the Plasma Membrane: A Complicated Relationship. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031831.	2.9	66

#	Article	IF	CITATIONS
37	A novel prenyl-polybasic domain code determines lipid-binding specificity of the K-Ras membrane anchor. Small GTPases, 2018, 11, 1-5.	0.7	11
38	Clustering of Rac1: Selective Lipid Sorting Drives Signaling. Trends in Biochemical Sciences, 2018, 43, 75-77.	3.7	6
39	Sphingomyelin Metabolism Is a Regulator of K-Ras Function. Molecular and Cellular Biology, 2018, 38, .	1.1	40
40	Deciphering lipid codes: Kâ€Ras as a paradigm. Traffic, 2018, 19, 157-165.	1.3	48
41	Electron microscopy combined with spatial analysis: quantitative mapping of the nano-assemblies of plasma membrane-associating proteins and lipids. Biophysics Reports, 2018, 4, 320-328.	0.2	5
42	Rac1 Nanoscale Organization on the Plasma Membrane Is Driven by Lipid Binding Specificity Encoded in the Membrane Anchor. Molecular and Cellular Biology, 2018, 38, .	1.1	43
43	An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth. Journal of Biological Chemistry, 2018, 293, 13696-13706.	1.6	20
44	Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers. Scientific Reports, 2017, 7, 40109.	1.6	85
45	Deubiquitinase USP18 Loss Mislocalizes and Destabilizes KRAS in Lung Cancer. Molecular Cancer Research, 2017, 15, 905-914.	1.5	28
46	The G protein–coupled receptor GPR31 promotes membrane association of KRAS. Journal of Cell Biology, 2017, 216, 2329-2338.	2.3	24
47	Ras Proteolipid Nanoassemblies on the Plasma Membrane Sort Lipids With High Selectivity. Advances in Biomembranes and Lipid Self-Assembly, 2017, 25, 41-62.	0.3	3
48	Lipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output. Cell, 2017, 168, 239-251.e16.	13.5	235
49	Lipid sorting and the activity of Arf signaling complexes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11266-11267.	3.3	1
50	Spatiotemporal Analysis of K-Ras Plasma Membrane Interactions Reveals Multiple High Order Homo-oligomeric Complexes. Journal of the American Chemical Society, 2017, 139, 13466-13475.	6.6	73
51	ï‰-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Science Advances, 2017, 3, eaao1193.	4.7	105
52	Inhibition of RAS function through targeting an allosteric regulatory site. Nature Chemical Biology, 2017, 13, 62-68.	3.9	237
53	Computational Equilibrium Thermodynamic and Kinetic Analysis of K-Ras Dimerization through an Effector Binding Surface Suggests Limited Functional Role. Journal of Physical Chemistry B, 2016, 120, 8547-8556.	1.2	45
54	AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2. Molecular and Cellular Biology, 2016, 36, 3086-3099.	1.1	57

#	Article	IF	CITATIONS
55	VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. Journal of Cell Biology, 2016, 214, 445-458.	2.3	44
56	Epac1 interacts with importin β1 and controls neurite outgrowth independently of cAMP and Rap1. Scientific Reports, 2016, 6, 36370.	1.6	13
57	Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane. Molecular and Cellular Biology, 2016, 36, 363-374.	1.1	92
58	Oncogenic K-Ras Binds to an Anionic Membrane in Two Distinct Orientations: A Molecular Dynamics Analysis. Biophysical Journal, 2016, 110, 1125-1138.	0.2	122
59	Binding hotspots on K-ras: Consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins: Structure, Function and Bioinformatics, 2015, 83, 898-909.	1.5	58
60	Ras nanoclusters: Versatile lipid-based signaling platforms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 841-849.	1.9	194
61	Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science, 2015, 349, 873-876.	6.0	243
62	Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. ELife, 2015, 4, e08905.	2.8	45
63	Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of Cell Biology, 2014, 204, 777-792.	2.3	112
64	Rare Streptomyces sp. polyketides as modulators of K-Ras localisation. Organic and Biomolecular Chemistry, 2014, 12, 4872-4878.	1.5	15
65	Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters. Molecular and Cellular Biology, 2014, 34, 862-876.	1.1	119
66	Temporal Production of the Signaling Lipid Phosphatidic Acid by Phospholipase D2 Determines the Output of Extracellular Signal-Regulated Kinase Signaling in Cancer Cells. Molecular and Cellular Biology, 2014, 34, 84-95.	1.1	104
67	Rare <i>Streptomyces N</i> -Formyl Amino-salicylamides Inhibit Oncogenic K-Ras. Organic Letters, 2014, 16, 5036-5039.	2.4	26
68	Ras Nanoclusters. , 2014, , 189-210.		1
69	Bile Acids Modulate Signaling by Functional Perturbation of Plasma Membrane Domains. Journal of Biological Chemistry, 2013, 288, 35660-35670.	1.6	96
70	Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Reports, 2013, 4, 238-247.	2.9	56
71	Inhibitors of K-Ras Plasma Membrane Localization. The Enzymes, 2013, 33 Pt A, 249-265.	0.7	13
72	Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission. Molecular and Cellular Biology, 2013, 33, 237-251.	1.1	94

#	Article	IF	CITATIONS
73	Another Surprise from Metformin: Novel Mechanism of Action via K-Ras Influences Endometrial Cancer Response to Therapy. Molecular Cancer Therapeutics, 2013, 12, 2847-2856.	1.9	72
74	Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10201-10206.	3.3	134
75	Ras nanoclusters. Small GTPases, 2013, 4, 57-60.	0.7	22
76	Staurosporine. Communicative and Integrative Biology, 2013, 6, e24746.	0.6	8
77	Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. ELife, 2013, 3, e01434.	2.8	114
78	Nonsteroidal Anti-inflammatory Drugs Alter the Spatiotemporal Organization of Ras Proteins on the Plasma Membrane. Journal of Biological Chemistry, 2012, 287, 16586-16595.	1.6	51
79	Staurosporines Disrupt Phosphatidylserine Trafficking and Mislocalize Ras Proteins. Journal of Biological Chemistry, 2012, 287, 43573-43584.	1.6	89
80	Constitutive Formation of Caveolae in a Bacterium. Cell, 2012, 150, 752-763.	13.5	126
81	Ras trafficking, localization and compartmentalized signalling. Seminars in Cell and Developmental Biology, 2012, 23, 145-153.	2.3	191
82	Structure-Based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling through Caveolin-Protein Interactions?. Developmental Cell, 2012, 23, 11-20.	3.1	127
83	The Effects of Transmembrane Sequence and Dimerization on Cleavage of the p75 Neurotrophin Receptor by γ-Secretase. Journal of Biological Chemistry, 2012, 287, 43810-43824.	1.6	45
84	Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1. PLoS ONE, 2012, 7, e43041.	1.1	49
85	Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proceedings of the United States of America, 2012, 109, 8097-8102.	3.3	160
86	Raf Inhibitors Target Ras Spatiotemporal Dynamics. Current Biology, 2012, 22, 945-955.	1.8	65
87	Therapeutic Levels of the Hydroxmethylglutaryl-Coenzyme A Reductase Inhibitor Lovastatin Activate Ras Signaling via Phospholipase D2. Molecular and Cellular Biology, 2011, 31, 1110-1120.	1.1	36
88	Signalling ballet in space and time. Nature Reviews Molecular Cell Biology, 2010, 11, 414-426.	16.1	563
89	H-Ras Nanocluster Stability Regulates the Magnitude of MAPK Signal Output. PLoS ONE, 2010, 5, e11991.	1.1	38
90	Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. Journal of Cell Biology, 2010, 190, 675-691.	2.3	263

#	Article	IF	CITATIONS
91	An N-Terminal Polybasic Motif of Gα _q Is Required for Signaling and Influences Membrane Nanodomain Distribution. Molecular Pharmacology, 2010, 78, 767-777.	1.0	18
92	Epidermal Growth Factor Receptor Activation Remodels the Plasma Membrane Lipid Environment To Induce Nanocluster Formation. Molecular and Cellular Biology, 2010, 30, 3795-3804.	1.1	87
93	The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes. Journal of Biological Chemistry, 2010, 285, 35188-35195.	1.6	42
94	Nucleophosmin and nucleolin regulate K-Ras signaling. Communicative and Integrative Biology, 2010, 3, 188-190.	0.6	14
95	Mathematical Modeling of K-Ras Nanocluster Formation on the Plasma Membrane. Biophysical Journal, 2010, 99, 534-543.	0.2	43
96	Ras membrane orientation and nanodomain localization generate isoform diversity. Proceedings of the United States of America, 2010, 107, 1130-1135.	3.3	209
97	The Nonsteroidal Anti-Inflammatory Drug Indomethacin Induces Heterogeneity in Lipid Membranes: Potential Implication for Its Diverse Biological Action. PLoS ONE, 2010, 5, e8811.	1.1	36
98	Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction. Journal of Biological Chemistry, 2009, 284, 28410-28419.	1.6	61
99	Localized Diacylglycerol-dependent Stimulation of Ras and Rap1 during Phagocytosis. Journal of Biological Chemistry, 2009, 284, 28522-28532.	1.6	34
100	MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology, 2009, 185, 1259-1273.	2.3	243
101	Hydrophobic and Basic Domains Target Proteins to Lipid Droplets. Traffic, 2009, 10, 1785-1801.	1.3	67
102	On the Use of Ripley's K-Function and Its Derivatives to Analyze Domain Size. Biophysical Journal, 2009, 97, 1095-1103.	0.2	228
103	Ras acylation, compartmentalization and signaling nanoclusters (Review). Molecular Membrane Biology, 2009, 26, 80-92.	2.0	113
104	A novel switch region regulates H-ras membrane orientation and signal output. EMBO Journal, 2008, 27, 727-735.	3.5	182
105	An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nature Cell Biology, 2008, 10, 740-747.	4.6	90
106	Using plasma membrane nanoclusters to build better signaling circuits. Trends in Cell Biology, 2008, 18, 364-371.	3.6	125
107	Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Developmental Biology, 2008, 314, 12-22.	0.9	27
108	PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell, 2008, 132, 113-124.	13.5	647

#	Article	IF	CITATIONS
109	Activation of the MAPK Module from Different Spatial Locations Generates Distinct System Outputs. Molecular Biology of the Cell, 2008, 19, 4776-4784.	0.9	78
110	Evolutionary analysis and molecular dissection of caveola biogenesis. Journal of Cell Science, 2008, 121, 2075-2086.	1.2	110
111	Ras nanoclusters: Combining digital and analog signaling. Cell Cycle, 2008, 7, 127-134.	1.3	68
112	System output of the MAPK module is spatially regulated. Communicative and Integrative Biology, 2008, 1, 178-179.	0.6	5
113	Mechanisms of Ras membrane organization and signaling: Ras on a rocker. Cell Cycle, 2008, 7, 2667-2673.	1.3	68
114	Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function. Molecular and Cellular Biology, 2008, 28, 4377-4385.	1.1	102
115	Caveolin Regulates Endocytosis of the Muscle Repair Protein, Dysferlin. Journal of Biological Chemistry, 2008, 283, 6476-6488.	1.6	80
116	Galectin-1 Is a Novel Structural Component and a Major Regulator of H-Ras Nanoclusters. Molecular Biology of the Cell, 2008, 19, 1404-1414.	0.9	132
117	K-Ras Nanoclustering Is Subverted by Overexpression of the Scaffold Protein Galectin-3. Cancer Research, 2008, 68, 6608-6616.	0.4	123
118	Ras nanoclusters: Molecular structure and assembly. Seminars in Cell and Developmental Biology, 2007, 18, 599-607.	2.3	125
119	Lipid rafts and membrane traffic. FEBS Letters, 2007, 581, 2098-2104.	1.3	271
120	Structure and Dynamics of the Full-Length Lipid-Modified H-Ras Protein in a 1,2-Dimyristoylglycero-3-phosphocholine Bilayer. Journal of Medicinal Chemistry, 2007, 50, 674-684.	2.9	189
121	Sources of Anomalous Diffusion on Cell Membranes: A Monte Carlo Study. Biophysical Journal, 2007, 92, 1975-1987.	0.2	119
122	PA promoted to manager. Nature Cell Biology, 2007, 9, 615-617.	4.6	34
123	Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biology, 2007, 9, 905-914.	4.6	372
124	Cholesterol-Sensitive Cdc42 Activation Regulates Actin Polymerization for Endocytosis via the GEEC Pathway. Traffic, 2007, 8, 702-717.	1.3	166
125	Reassessing the Role of Phosphocaveolinâ€1 in Cell Adhesion and Migration. Traffic, 2007, 8, 1695-1705.	1.3	32
126	Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. Cellular Signalling, 2007, 19, 1279-1289.	1.7	94

#	Article	IF	CITATIONS
127	Lipid rafts: contentious only from simplistic standpoints. Nature Reviews Molecular Cell Biology, 2006, 7, 456-462.	16.1	719
128	Biogenesis of caveolae: a structural model for caveolin-induced domain formation. Journal of Cell Science, 2006, 119, 787-796.	1.2	253
129	Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane. Molecular and Cellular Biology, 2006, 26, 313-323.	1.1	174
130	Subcellular Localization Determines MAP Kinase Signal Output. Current Biology, 2005, 15, 869-873.	1.8	155
131	Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 2005, 168, 465-476.	2.3	385
132	Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Human Molecular Genetics, 2005, 14, 1727-1743.	1.4	86
133	H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15500-15505.	3.3	423
134	Individual Palmitoyl Residues Serve Distinct Roles in H-Ras Trafficking, Microlocalization, and Signaling. Molecular and Cellular Biology, 2005, 25, 6722-6733.	1.1	187
135	Ras plasma membrane signalling platforms. Biochemical Journal, 2005, 389, 1-11.	1.7	219
136	Electron microscopic imaging of Ras signaling domains. Methods, 2005, 37, 165-172.	1.9	49
137	Lipid rafts and plasma membrane microorganization: insights from Ras. Trends in Cell Biology, 2004, 14, 141-147.	3.6	180
138	Three Separable Domains Regulate GTP-Dependent Association of H-ras with the Plasma Membrane. Molecular and Cellular Biology, 2004, 24, 6799-6810.	1.1	150
139	GPI-Anchor Synthesis. Developmental Cell, 2004, 6, 743-745.	3.1	17
140	Ras proteins: different signals from different locations. Nature Reviews Molecular Cell Biology, 2003, 4, 373-385.	16.1	778
141	C-terminal sequences in R-Ras are involved in integrin regulation and in plasma membrane microdomain distribution. Biochemical and Biophysical Research Communications, 2003, 311, 829-838.	1.0	24
142	Direct visualization of Ras proteins in spatially distinct cell surface microdomains. Journal of Cell Biology, 2003, 160, 165-170.	2.3	699
143	Identification of Residues and Domains of Raf Important for Function in Vivo and in Vitro. Journal of Biological Chemistry, 2003, 278, 45519-45527.	1.6	18
144	Caveolin Interacts with the Angiotensin II Type 1 Receptor during Exocytic Transport but Not at the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 23738-23746.	1.6	110

#	Article	IF	CITATIONS
145	Mechanism of Mitosis-specific Activation of MEK1. Journal of Biological Chemistry, 2003, 278, 16747-16754.	1.6	49
146	Observing Cell Surface Signaling Domains Using Electron Microscopy. Science Signaling, 2003, 2003, pl9-pl9.	1.6	58
147	The Linker Domain of the Ha-Ras Hypervariable Region Regulates Interactions with Exchange Factors, Raf-1 and Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2002, 277, 272-278.	1.6	76
148	Flotillin-1/Reggie-2 Traffics to Surface Raft Domains via a Novel Golgi-independent Pathway. Journal of Biological Chemistry, 2002, 277, 48834-48841.	1.6	200
149	H-Ras Signaling and K-Ras Signaling Are Differentially Dependent on Endocytosis. Molecular and Cellular Biology, 2002, 22, 5128-5140.	1.1	128
150	Inhibition of Lipid Raft-dependent Signaling by a Dystrophy-associated Mutant of Caveolin-3. Journal of Biological Chemistry, 2002, 277, 17944-17949.	1.6	43
151	Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene, 2001, 20, 3949-3958.	2.6	170
152	GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biology, 2001, 3, 368-375.	4.6	492
153	Which Ras rides the raft? - Reply. Nature Cell Biology, 2001, 3, E172-E172.	4.6	4
154	Human Papillomavirus Type 6b Virus-Like Particles Are Able To Activate the Ras-MAP Kinase Pathway and Induce Cell Proliferation. Journal of Virology, 2001, 75, 4150-4157.	1.5	35
155	Caveolin and ras function. Methods in Enzymology, 2001, 333, 172-183.	0.4	24
156	Cell regulation: Cellular aspects of signal transduction. Current Opinion in Cell Biology, 2000, 12, 153-156.	2.6	4
157	Characterization of RasGRP2, a Plasma Membrane-targeted, Dual Specificity Ras/Rap Exchange Factor. Journal of Biological Chemistry, 2000, 275, 32260-32267.	1.6	109
158	H-ras but Not K-ras Traffics to the Plasma Membrane through the Exocytic Pathway. Molecular and Cellular Biology, 2000, 20, 2475-2487.	1.1	397
159	Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biology, 1999, 1, 98-105.	4.6	411
160	Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene, 1999, 18, 3862-3869.	2.6	66
161	Ras Isoforms Vary in Their Ability to Activate Raf-1 and Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 1998, 273, 24052-24056.	1.6	393
162	14-3-3 Facilitates Ras-Dependent Raf-1 Activation In Vitro and In Vivo. Molecular and Cellular Biology, 1998, 18, 3947-3955.	1.1	124

#	Article	IF	CITATIONS
163	Activity of Plasma Membrane-recruited Raf-1 Is Regulated by Ras via the Raf Zinc Finger. Journal of Biological Chemistry, 1997, 272, 20139-20145.	1.6	97
164	[10] Stimulation of nucleotide exchange on Ras- and Rho-related proteins by small GTP-binding protein GDP dissociation stimulator. Methods in Enzymology, 1995, 256, 85-90.	0.4	3
165	[7] Reticulocyte lysate assay for in Vitro translation and posttranslational modification of Ras proteins. Methods in Enzymology, 1995, 255, 60-65.	0.4	22
166	[24] Prenylation and palmitoylation analysis. Methods in Enzymology, 1995, 255, 237-245.	0.4	33
167	[2] Purification of baculovirus-expressed recombinant ras and rap proteins. Methods in Enzymology, 1995, 255, 13-21.	0.4	29
168	Anti-Ras drugs come of age. Current Biology, 1993, 3, 770-772.	1.8	28
169	COS Cell Expression. , 1992, 8, 153-158.		6
170	The ras Superfamily: Post-Translational Modifications and Functional Regulation. , 1992, , 1-5.		0
171	A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 1990, 63, 133-139.	13.5	1,046
172	Conformational effects of nucleotide exchange in ras p21 proteins as studied by fluorescence spectroscopy. FEBS Letters, 1990, 262, 127-130.	1.3	12
173	All ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 1989, 57, 1167-1177.	13.5	1,826
174	The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature, 1988, 332, 548-551.	13.7	414