
Jennifer C Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex differences in TLR4 expression in SHR do not contribute to sex differences in blood pressure or the renal T cell profile. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R319-R325.	1.8	3
2	Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation. Journal of the American Society of Nephrology: JASN, 2022, 33, 769-785.	6.1	10
3	Treatment of male and female spontaneously hypertensive rats with TNF-α inhibitor etanercept increases markers of renal injury independent of an effect on blood pressure. Biology of Sex Differences, 2022, 13, 17.	4.1	2
4	Persistent vascular congestion in male spontaneously hypertensive rats contributes to delayed recovery of renal function following renal ischemia perfusion compared with females. Clinical Science, 2022, 136, 825-840.	4.3	6
5	Glutathione peroxidase 4 prevents 12/15 LOX induced renal oxidative cell death and improves renal post Ischemic recovery in Male Spontaneous Hypertensive Rats (SHR). FASEB Journal, 2022, 36, .	0.5	0
6	Sexual dimorphism in renal heme oxygenase-1 and arachidonic acid metabolizing enzymes in spontaneously hypertensive rats versus normotensive Wistar Kyoto rats. Prostaglandins and Other Lipid Mediators, 2022, 161, 106650.	1.9	3
7	Adverse Maternal and Fetal Outcomes in a Novel Experimental Model of Pregnancy after Recovery from Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2021, 32, 375-384.	6.1	7
8	Editorial: Hypertension and Chronic Kidney Injury or Failure. Frontiers in Physiology, 2021, 12, 662737.	2.8	0
9	Impact of sex and pathophysiology on optimal drug choice in hypertensive rats: Quantitative insights for precision medicine. IScience, 2021, 24, 102341.	4.1	9
10	Inhibition of 12/15 Lipoxygenase (12/15 LOX) Improves Renal Recovery and Function Post Renal Ischemia Reperfusion (IR) injury in Male Spontaneous Hypertensive Rats (SHR). FASEB Journal, 2021, 35, .	0.5	0
11	Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR). Clinical Science, 2021, 135, 1791-1804.	4.3	24
12	Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke. Vascular Pharmacology, 2021, 141, 106904.	2.1	6
13	Splenectomy increases blood pressure and abolishes sex differences in renal T-regulatory cells in spontaneously hypertensive rats. Clinical Science, 2021, 135, 2329-2339.	4.3	3
14	Editorial: Hypertension and Chronic Kidney Injury or Failure, Volume II. Frontiers in Physiology, 2021, 12, 824971.	2.8	2
15	Does sex matter?: an update on the implementation of sex as a biological variable in research. American Journal of Physiology - Renal Physiology, 2020, 318, F329-F331.	2.7	15
16	Ultrasound measurement of change in kidney volume is a sensitive indicator of severity of renal parenchymal injury. American Journal of Physiology - Renal Physiology, 2020, 319, F447-F457.	2.7	7
17	IL-10 treatment decreases blood pressure in male, but not female, spontaneously hypertensive rats. American Journal of Physiology - Renal Physiology, 2020, 319, F359-F365.	2.7	14
18	Toll-Like Receptors Contribute to Sex Differences in Blood Pressure Regulation. Journal of Cardiovascular Pharmacology, 2020, 76, 255-266.	1.9	13

#	Article	IF	CITATIONS
19	High-Mobility Group Box-1 Is Associated With Obesity, Inflammation, and Subclinical Cardiovascular Risk Among Young Adults. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2776-2784.	2.4	18
20	Greater T Regulatory Cells in Females Attenuate DOCA-Salt–Induced Increases in Blood Pressure Versus Males. Hypertension, 2020, 75, 1615-1623.	2.7	32
21	Hypertensive female Sprague-Dawley rats require an intact nitric oxide synthase system for compensatory increases in renal regulatory T cells. American Journal of Physiology - Renal Physiology, 2020, 319, F192-F201.	2.7	10
22	Greater high-mobility group box 1 in male compared with female spontaneously hypertensive rats worsens renal ischemia–reperfusion injury. Clinical Science, 2020, 134, 1751-1762.	4.3	9
23	Stimulation of Angiotensin II Receptor 2 Preserves Cognitive Function Post Stroke and is Associated with an Enhanced Cerebral Vascular Density in Female Rats FASEB Journal, 2020, 34, 1-1.	0.5	О
24	Inhibition of Toll-Like Receptor-4 (TLR-4) Improves Neurobehavioral Outcomes After Acute Ischemic Stroke in Diabetic Rats: Possible Role of Vascular Endothelial TLR-4. Molecular Neurobiology, 2019, 56, 1607-1617.	4.0	39
25	Tipping the scales: Are females more at risk for obesity―and highâ€fat dietâ€induced hypertension and vascular dysfunction?. British Journal of Pharmacology, 2019, 176, 4226-4242.	5.4	10
26	Necrosis Contributes to the Development of Hypertension in Male, but Not Female, Spontaneously Hypertensive Rats. Hypertension, 2019, 74, 1524-1531.	2.7	10
27	Sex and the kidneys: current understanding and research opportunities. Nature Reviews Nephrology, 2019, 15, 776-783.	9.6	68
28	PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13394-13403.	7.1	113
29	Sex as a biological variable in renal, metabolic, and cardiovascular physiology: eighteen years of leadership by the American Physiological Society. American Journal of Physiology - Renal Physiology, 2019, 316, F615-F616.	2.7	2
30	The importance of sex differences in pharmacology research. British Journal of Pharmacology, 2019, 176, 4087-4089.	5.4	13
31	Recent advances in sex differences in kidney function. American Journal of Physiology - Renal Physiology, 2019, 316, F328-F331.	2.7	28
32	Gender Difference in Damage-Mediated Signaling Contributes to Pulmonary Arterial Hypertension. Antioxidants and Redox Signaling, 2019, 31, 917-932.	5.4	19
33	Prevention of Vascular Congestion Improves Renal Recovery and Function Post Renal Ischemiaâ€Reperfusion in Male Spontaneous Hypertensive Rats. FASEB Journal, 2019, 33, 864.2.	0.5	Ο
34	Splenectomy Increases Blood Pressure and Alters the Renal T Cell Profile in a Sex‧pecific Manner in Spontaneously Hypertensive Rats. FASEB Journal, 2019, 33, .	0.5	0
35	Intermittent hypoxia prior to completion of nephrogenesis increases systolic blood pressure and proteinuria after angiotensin II treatment in adult male rats. FASEB Journal, 2019, 33, 593.6.	0.5	0
36	Apoptosis contributes to the proâ€inflammatory T cell profile in blood of male and female spontaneously hypertensive rats, but not the control of blood pressure. FASEB Journal, 2019, 33, 758.11.	0.5	0

#	Article	IF	CITATIONS
37	Spironolactone Effectively Reduces Renal ENaC Activity and Hypertension in Ang Ilâ€Infused Female Rats in a Sexâ€Specific Manner. FASEB Journal, 2019, 33, 751.21.	0.5	0
38	Oral NaHCO3 Activates a Splenic Anti-Inflammatory Pathway: Evidence That Cholinergic Signals Are Transmitted via Mesothelial Cells. Journal of Immunology, 2018, 200, 3568-3586.	0.8	22
39	Influence of the selective COX-2 inhibitor celecoxib on sex differences in blood pressure and albuminuria in spontaneously hypertensive rats. Prostaglandins and Other Lipid Mediators, 2018, 135, 16-20.	1.9	8
40	Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension. Toxicological Research, 2018, 34, 363-370.	2.1	5
41	High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female Dahl salt-sensitive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1713-H1723.	3.2	33
42	Sex Differences in Hypertension: Where We Have Been and Where We Are Going. American Journal of Hypertension, 2018, 31, 1247-1254.	2.0	148
43	Cutting the Fat. Hypertension, 2018, 72, 1081-1083.	2.7	2
44	Acute Tetrahydrobiopterin Improves Endothelial Function in Patients WithÂCOPD. Chest, 2018, 154, 597-606.	0.8	11
45	Oxidative stress induces BH4 deficiency in male, but not female, SHR. Bioscience Reports, 2018, 38, .	2.4	11
46	Female Spontaneous Hypertensive Rats (SHR) Have Better Recovery In Response To Renal Ischemia Reperfusion Injury Than Males. FASEB Journal, 2018, 32, 850.7.	0.5	0
47	Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability. American Journal of Physiology - Renal Physiology, 2017, 313, F174-F183.	2.7	33
48	Greater transforming growth factor-β in adult female SHR is dependent on blood pressure, but does not account for sex differences in renal T-regulatory cells. American Journal of Physiology - Renal Physiology, 2017, 313, F847-F853.	2.7	13
49	Sex and gender differences in hypertensive kidney injury. American Journal of Physiology - Renal Physiology, 2017, 313, F1009-F1017.	2.7	38
50	Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats. American Journal of Physiology - Renal Physiology, 2017, 313, F1097-F1105.	2.7	24
51	Sex differences in obesity-induced hypertension and vascular dysfunction: a protective role for estrogen in adipose tissue inflammation?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R714-R720.	1.8	34
52	Hemodynamic responses to acute angiotensin II infusion are exacerbated in male versus female spontaneously hypertensive rats. Physiological Reports, 2016, 4, e12677.	1.7	15
53	Endothelin, sex, and pregnancy: unique considerations for blood pressure control in females. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R691-R696.	1.8	10
54	Nitric oxide synthase-mediated blood pressure regulation in obese melanocortin-4 receptor-deficient pregnant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R851-R857.	1.8	4

#	Article	IF	CITATIONS
55	T-cell involvement in sex differences in blood pressure control. Clinical Science, 2016, 130, 773-783.	4.3	25
56	Sex Differences in Hypertension. Hypertension, 2016, 68, 1322-1327.	2.7	163
57	Reply to "Letter to the editor: â€~Concern regarding quantification of urinary nephrin by commercially available ELISA'― American Journal of Physiology - Renal Physiology, 2015, 309, F271-F271.	2.7	Ο
58	Emerging concept: bringing our trainees into focus. American Journal of Physiology - Renal Physiology, 2015, 309, F89-F89.	2.7	0
59	Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovascular Research, 2015, 107, 119-130.	3.8	149
60	Blood Pressure, Sex, and Female Sex Hormones Influence Renal Inner Medullary Nitric Oxide Synthase Activity and Expression in Spontaneously Hypertensive Rats. Journal of the American Heart Association, 2015, 4, .	3.7	16
61	Five years of data diuresis: what have WEH learned?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1060-R1061.	1.8	Ο
62	Chronic ANG II infusion induces sex-specific increases in renal T cells in Sprague-Dawley rats. American Journal of Physiology - Renal Physiology, 2015, 308, F706-F712.	2.7	35
63	Differences in angiotensin (1–7) between men and women. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1171-H1176.	3.2	59
64	Female Sex Hormones Protect Against Saltâ€Induced Increases in Immune System Activation in Dahl Saltâ€Sensitive Rats (DSS). FASEB Journal, 2015, 29, 667.5.	0.5	0
65	Female sex hormones protect against salt-sensitive hypertension but not essential hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R149-R157.	1.8	25
66	Female spontaneously hypertensive rats are more dependent on ANG (1-7) to mediate effects of low-dose AT ₁ receptor blockade than males. American Journal of Physiology - Renal Physiology, 2014, 306, F1136-F1142.	2.7	19
67	Sex Differences in T Cells in Hypertension. Clinical Therapeutics, 2014, 36, 1882-1900.	2.5	45
68	Sex-specific alterations in NOS regulation of vascular function in aorta and mesenteric arteries from spontaneously hypertensive rats compared to Wistar Kyoto rats. Physiological Reports, 2014, 2, e12125.	1.7	24
69	Sex Differences in Blood Pressure Control. Hypertension, 2014, 64, 237-239.	2.7	6
70	Female Spontaneously Hypertensive Rats Have a Compensatory Increase in Renal Regulatory T Cells in Response to Elevations in Blood Pressure. Hypertension, 2014, 64, 557-564.	2.7	79
71	Enhanced angiotensin-converting enzyme activity and systemic reactivity to angiotensin II in normotensive rats exposed to a high-sodium diet. Vascular Pharmacology, 2014, 60, 67-74.	2.1	19
72	Female SHR have greater blood pressure sensitivity and renal T cell infiltration following chronic NOS inhibition than males. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R701-R710.	1.8	33

5

#	Article	IF	CITATIONS
73	Response to "Determination of Sex Differences in Activities of Angiotensin-Converting Enzyme 2 (ACE2) Requires an Activity Assay That Doesn't Underestimate ACE2". American Journal of Hypertension, 2013, 26, 1173-1173.	2.0	0
74	Sex Differences in Angiotensin-Converting Enzyme Modulation of Ang (1-7) Levels in Normotensive WKY Rats. American Journal of Hypertension, 2013, 26, 591-598.	2.0	44
75	Hypertension: What's Sex Got to do With It?. Physiology, 2013, 28, 234-244.	3.1	64
76	Sex does not impact asymmetric dimethylarginine (ADMA) or Lâ€arginine (Lâ€arg) levels in spontaneously hypertensive rats (SHR) FASEB Journal, 2013, 27, 1112.1.	0.5	0
77	Neither Hypertension nor Sexual Maturation is Responsible for Elevated Mesenteric Arterial Expression of TGFâ€Ĥ² in Female Spontaneously Hypertensive Rats (SHR). FASEB Journal, 2013, 27, .	0.5	0
78	Ang (1–7) Has a Greater Contribution to the Blood Pressure Lowering Effects of AT1 Receptor Blockade in Female Spontaneously Hypertensive Rats (SHR) Compared to Males. FASEB Journal, 2013, 27, 904.3.	0.5	0
79	The Impact of High Mobility Group Box 1 Protein (HMGB1) on Renal Ischemiaâ€Reperfusion Injury in Male and Female Spontaneously Hypertensive Rats (SHR). FASEB Journal, 2013, 27, 1114.7.	0.5	0
80	Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R359-R367.	1.8	76
81	Use of ultrasound to assess renal reperfusion and P-selectin expression following unilateral renal ischemia. American Journal of Physiology - Renal Physiology, 2012, 303, F1333-F1340.	2.7	22
82	Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R274-R282.	1.8	64
83	Female Spontaneously Hypertensive Rats (SHR) Have Higher Expression of TGFâ€Î² and Smad Signaling in Mesenteric Arteries Following the Development of Hypertension. FASEB Journal, 2012, 26, 880.1.	0.5	0
84	Female Spontaneously Hypertensive Rats (SHR) have greater increases in NOS in mesenteric arteries than males. FASEB Journal, 2012, 26, 878.5.	0.5	0
85	REDUCED FUNCTIONALITY OF RENINâ€ANGIOTENSINâ€ALDOSTERONE SYSTEM IN YOUNG RATS EXPOSED TO HIGHâ€SALT DIET. FASEB Journal, 2012, 26, 1140.4.	0.5	0
86	Angiotensin (1-7) Receptor Antagonism Equalizes Angiotensin II–Induced Hypertension in Male and Female Spontaneously Hypertensive Rats. Hypertension, 2010, 56, 658-666.	2.7	106
87	Renal NOS activity, expression, and localization in male and female spontaneously hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R61-R69.	1.8	59
88	AT1 receptor―independent oxidative stress in angiotensin II (Ang II) infused Male Spontaneously Hypertensive Rats (SHR). FASEB Journal, 2010, 24, 605.14.	0.5	0
89	Chronic angiotensin II (Ang II) increases renal oxidative stress in male spontanously hypertensive rats (SHR), but not in female SHR. FASEB Journal, 2010, 24, 1041.1.	0.5	0
90	Effect of Angiotensin II on Oxidative Stress in Female Borderline Hypertensive Rats. FASEB Journal, 2010, 24, 701.10.	0.5	0

#	Article	IF	CITATIONS
91	Novel use of ultrasound to examine regional blood flow in the mouse kidney. American Journal of Physiology - Renal Physiology, 2009, 297, F228-F235.	2.7	40
92	Greater fractalkine expression in mesenteric arteries of female spontaneously hypertensive rats compared with males. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1080-H1088.	3.2	9
93	Effects of estradiol on renal cyclic guanosine monophosphate and oxidative stress in spontaneously hypertensive rats. Gender Medicine, 2009, 6, 498-510.	1.4	12
94	Measurement of regional kidney perfusion in mice: comparison of a novel, nonâ€invasive technique against conventional laserâ€Doppler flowmetry FASEB Journal, 2009, 23, 969.1.	0.5	0
95	Induction of hemeoxygenase†slows the progression of hypertension and proteinuria in spontaneously hypertensive rats. FASEB Journal, 2009, 23, 1017.38.	0.5	0
96	Influence of salt and estrogen on inner medullary NOS expression in female spontaneously hypertensive rats (SHR). FASEB Journal, 2009, 23, 968.4.	0.5	0
97	Mechanisms of attenuated angiotensin Ilâ€induced aortic constriction from Dahl saltâ€sensitive rats following a 4â€week highâ€fat diet. FASEB Journal, 2009, 23, 626.20.	0.5	Ο
98	Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1220-R1226.	1.8	166
99	Mechansim of reduced vascular relaxation in aorta from Dahl saltâ€sensitive rats on elevated dietary fat. FASEB Journal, 2008, 22, 969.34.	0.5	Ο
100	NOS1â€specific activity is lost and NOS3â€specific activity is attenuated in the renal inner medulla of male spontaneously hypertensive rats (SHR) compared to female SHR FASEB Journal, 2008, 22, 941.1.	0.5	0
101	High fat diet reduces NOS functional activity during vasoconstriction in aorta, but not small mesenteric arteries, from Dahl rats. FASEB Journal, 2008, 22, 947.9.	0.5	0
102	Sexual dimorphism in oxidant status in spontaneously hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R764-R768.	1.8	68
103	Sex and sex hormones influence the development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1573-R1579.	1.8	82
104	Endothelin A Receptor Blockade Reduces Diabetic Renal Injury via an Anti-Inflammatory Mechanism. Journal of the American Society of Nephrology: JASN, 2007, 18, 143-154.	6.1	177
105	INFLUENCE OF SALT ON SUBCELLULAR LOCALIZATION OF NITRIC OXIDE SYNTHASE ACTIVITY AND EXPRESSION IN THE RENAL INNER MEDULLA. Clinical and Experimental Pharmacology and Physiology, 2007, 35, 070924173348004-???.	1.9	6
106	Estrogen effects on NOS in the renal cortex of Spontaneously Hypertensive Rats (SHR) FASEB Journal, 2007, 21, A1417.	0.5	0
107	Renal medullary NADPH oxidase activity in DOCAâ€salt hypertensive rats. FASEB Journal, 2007, 21, A1364.	0.5	0
108	Sex differences in fractalkine responses in spontaneously hypertensive rats (SHR). FASEB Journal, 2007, 21, 41418	0.5	1

21, A1418.

7

#	Article	IF	CITATIONS
109	Catalase activity and expression are reduced in mesenteric arteries from angiotensin Ilâ€infused hypertensive rats. FASEB Journal, 2007, 21, A445.	0.5	Ο
110	Superoxide-dependent hypertension in male and female endothelin B receptor-deficient rats. Experimental Biology and Medicine, 2006, 231, 818-23.	2.4	20
111	Sexual Dimorphism in Renal Production of Prostanoids in Spontaneously Hypertensive Rats. Hypertension, 2005, 45, 406-411.	2.7	69
112	Age-related alterations in NOS and oxidative stress in mesenteric arteries from male and female rats. Journal of Applied Physiology, 2004, 97, 1268-1274.	2.5	21
113	Altered Nitric Oxide Synthase 3 Distribution in Mesenteric Arteries of Hypertensive Rats. Hypertension, 2002, 39, 597-602.	2.7	43
114	Functional NOS 1 in the rat mesenteric arterial bed. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H658-H663.	3.2	17