
Peter Cresswell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viperin triggers ribosome collision-dependent translation inhibition to restrict viral replication. Molecular Cell, 2022, 82, 1631-1642.e6.	9.7	16
2	Impact of Calreticulin and Its Mutants on EndoplasmicÂReticulum Function in Health and Disease. Progress in Molecular and Subcellular Biology, 2021, 59, 163-180.	1.6	2
3	Nilabh Shastri (1952–2021). Immunity, 2021, 54, 389-390.	14.3	3
4	Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	142
5	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	14.3	115
6	Disruption of <i>mosGILT</i> in <i>Anopheles gambiae</i> impairs ovarian development and <i>Plasmodium</i> infection. Journal of Experimental Medicine, 2020, 217, .	8.5	18
7	HLA tapasin independence: broader peptide repertoire and HIV control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28232-28238.	7.1	51
8	Quantitating Endosomal Escape of a Library of Polymers for mRNA Delivery. Nano Letters, 2020, 20, 1117-1123.	9.1	59
9	Intrinsic expression of viperin regulates thermogenesis in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17419-17428.	7.1	27
10	Proteasomal degradation within endocytic organelles mediates antigen crossâ€presentation. EMBO Journal, 2019, 38, e99266.	7.8	49
11	A personal retrospective on the mechanisms of antigen processing. Immunogenetics, 2019, 71, 141-160.	2.4	17
12	miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nature Communications, 2018, 9, 5110.	12.8	38
13	A mosquito salivary gland protein partially inhibits Plasmodium sporozoite cell traversal and transmission. Nature Communications, 2018, 9, 2908.	12.8	40
14	A novel probe to assess cytosolic entry of exogenous proteins. Nature Communications, 2018, 9, 3104.	12.8	18
15	Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. Journal of Immunology, 2018, 201, 1875-1888.	0.8	20
16	Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. Journal of Biological Chemistry, 2018, 293, 9555-9569.	3.4	54
17	The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation. Current Opinion in Immunology, 2017, 46, 89-96.	5.5	45
18	Structural studies of viperin, an antiviral radical SAM enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6806-6811.	7.1	69

#	Article	IF	CITATIONS
19	Editorial Overview: Antigen Processing and Presentation; many fingers in many pies. Current Opinion in Immunology, 2017, 46, v-vii.	5.5	0
20	Editing peptide presentation to T cells. Science, 2017, 358, 992-993.	12.6	2
21	Sec61 blockade by mycolactone inhibits antigen cross-presentation independently of endosome-to-cytosol export. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5910-E5919.	7.1	77
22	Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits viperin-mediated inhibition of the interferon response in macrophages. PLoS ONE, 2017, 12, e0172236.	2.5	32
23	Antigen Processing and Presentation Mechanisms in Myeloid Cells. Microbiology Spectrum, 2016, 4, .	3.0	41
24	The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nature Immunology, 2015, 16, 729-736.	14.5	121
25	Are ERAD components involved in cross-presentation?. Molecular Immunology, 2015, 68, 112-115.	2.2	28
26	Three Tapasin Docking Sites in TAP Cooperate To Facilitate Transporter Stabilization and Heterodimerization. Journal of Immunology, 2014, 192, 2480-2494.	0.8	16
27	Invariant chain–MHC class II complexes: always odd and never invariant. Immunology and Cell Biology, 2014, 92, 471-472.	2.3	23
28	A congenital disorder of deglycosylation: biochemical characterization of Nâ€glycanase 1 deficiency in patient fibroblasts (607.3). FASEB Journal, 2014, 28, 607.3.	0.5	0
29	Expanding roles for GILT in immunity. Current Opinion in Immunology, 2013, 25, 103-108.	5.5	64
30	Pathways of Antigen Processing. Annual Review of Immunology, 2013, 31, 443-473.	21.8	1,224
31	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79.	0.9	4
32	Viperin Regulates Cellular Lipid Metabolism during Human Cytomegalovirus Infection. PLoS Pathogens, 2013, 9, e1003497.	4.7	97
33	Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3393-3398.	7.1	48
34	Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation. Journal of Biological Chemistry, 2013, 288, 16391-16402.	3.4	7
35	Critical residues in the PMEL/Pmel17 N-terminus direct the hierarchical assembly of melanosomal fibrils. Molecular Biology of the Cell, 2013, 24, 964-981.	2.1	45
36	Intracellular Regulation of Cross-Presentation during Dendritic Cell Maturation. PLoS ONE, 2013, 8, e76801.	2.5	15

#	Article	IF	CITATIONS
37	MHC Class II-Restricted Presentation of the Major House Dust Mite Allergen Der p 1 Is GILT-Dependent: Implications for Allergic Asthma. PLoS ONE, 2013, 8, e51343.	2.5	22
38	Intracellular events regulating cross-presentation. Frontiers in Immunology, 2012, 3, 138.	4.8	25
39	A Switch in Pathogenic Mechanism in Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis in IFN-γ–Inducible Lysosomal Thiol Reductase-Free Mice. Journal of Immunology, 2012, 188, 6001-6009.	0.8	19
40	Dynamics of Major Histocompatibility Complex Class I Association with the Human Peptide-loading Complex. Journal of Biological Chemistry, 2012, 287, 31172-31184.	3.4	47
41	Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor. Open Biology, 2012, 2, 110036.	3.6	34
42	Inefficient exogenous loading of a tapasinâ€dependent peptide onto <scp>HLA</scp> â€ <scp>B</scp> *44:02 can be improved by acid treatment or fixation of target cells. European Journal of Immunology, 2012, 42, 1417-1428.	2.9	7
43	Disulfide Reduction in the Endocytic Pathway: Immunological Functions of Gamma-Interferon-Inducible Lysosomal Thiol Reductase. Antioxidants and Redox Signaling, 2011, 15, 657-668.	5.4	88
44	A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4956-4961.	7.1	68
45	Viperin: A Multifunctional, Interferon-Inducible Protein that Regulates Virus Replication. Cell Host and Microbe, 2011, 10, 534-539.	11.0	210
46	Human Cytomegalovirus Directly Induces the Antiviral Protein Viperin to Enhance Infectivity. Science, 2011, 332, 1093-1097.	12.6	177
47	Labile disulfide bonds are common at the leucocyte cell surface. Open Biology, 2011, 1, 110010.	3.6	71
48	Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease. Cellular and Molecular Life Sciences, 2011, 68, 2469-2480.	5.4	32
49	Essential glycan-dependent interactions optimize MHC class I peptide loading. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4950-4955.	7.1	76
50	Proprotein Convertases Process Pmel17 during Secretion. Journal of Biological Chemistry, 2011, 286, 9321-9337.	3.4	45
51	The Interferon-Inducible Gene viperin Restricts West Nile Virus Pathogenesis. Journal of Virology, 2011, 85, 11557-11566.	3.4	130
52	Editorial overview. Current Opinion in Immunology, 2010, 22, 78-80.	5.5	7
53	Defective Cross-Presentation of Viral Antigens in GILT-Free Mice. Science, 2010, 328, 1394-1398.	12.6	115
54	Endoplasmic Reticulum Export, Subcellular Distribution, and Fibril Formation by Pmel17 Require an Intact N-terminal Domain Junction. Journal of Biological Chemistry, 2010, 285, 16166-16183.	3.4	25

#	Article	IF	CITATIONS
55	Calreticulin Controls the Rate of Assembly of CD1d Molecules in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 38283-38292.	3.4	10
56	GILT Accelerates Autoimmunity to the Melanoma Antigen Tyrosinase-Related Protein 1. Journal of Immunology, 2010, 185, 2828-2835.	0.8	47
57	The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20452-20457.	7.1	209
58	Natural Lipid Ligands Associated with Human CD1d Targeted to Different Subcellular Compartments. Journal of Immunology, 2009, 182, 4784-4791.	0.8	85
59	The N-terminal Amphipathic α-Helix of Viperin Mediates Localization to the Cytosolic Face of the Endoplasmic Reticulum and Inhibits Protein Secretion. Journal of Biological Chemistry, 2009, 284, 4705-4712.	3.4	134
60	Receptor-mediated phagocytosis elicits cross-presentation in nonprofessional antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3324-3329.	7.1	59
61	Functional significance of tapasin membrane association and disulfide linkage to ERp57 in MHC class I presentation. European Journal of Immunology, 2009, 39, 2371-2376.	2.9	23
62	Insights into MHC Class I Peptide Loading from the Structure of the Tapasin-ERp57 Thiol Oxidoreductase Heterodimer. Immunity, 2009, 30, 21-32.	14.3	251
63	Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation. Immunity, 2009, 30, 888-898.	14.3	159
64	Viperin is required for optimal Th2 responses and T-cell receptor–mediated activation of NF-κB and AP-1. Blood, 2009, 113, 3520-3529.	1.4	72
65	GILT is a critical host factor for Listeria monocytogenes infection. Nature, 2008, 455, 1244-1247.	27.8	128
66	Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells. EMBO Journal, 2008, 27, 201-211.	7.8	67
67	The quality control of MHC class I peptide loading. Current Opinion in Cell Biology, 2008, 20, 624-631.	5.4	173
68	Regulation of MHC Class I Assembly and Peptide Binding. Annual Review of Cell and Developmental Biology, 2008, 24, 343-368.	9.4	173
69	The redox activity of ERp57 is not essential for its functions in MHC class I peptide loading. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10477-10482.	7.1	53
70	Target Peptide Sequence within Infectious Human Immunodeficiency Virus Type 1 Does Not Ensure Envelope-Specific T-Helper Cell Reactivation: Influences of Cysteine Protease and Gamma Interferon-Induced Thiol Reductase Activities. Vaccine Journal, 2008, 15, 713-719.	3.1	28
71	<i>C19orf48</i> Encodes a Minor Histocompatibility Antigen Recognized by CD8+ Cytotoxic T Cells from Renal Cell Carcinoma Patients. Clinical Cancer Research, 2008, 14, 5260-5269.	7.0	59
72	Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5551-5556.	7.1	96

#	Article	IF	CITATIONS
73	Severe Tryptophan Starvation Blocks Onset of Conventional Persistence and Reduces Reactivation of Chlamydia trachomatis. Infection and Immunity, 2007, 75, 5105-5117.	2.2	87
74	The Interferon-Inducible Protein Viperin Inhibits Influenza Virus Release by Perturbing Lipid Rafts. Cell Host and Microbe, 2007, 2, 96-105.	11.0	402
75	Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nature Immunology, 2007, 8, 873-881.	14.5	215
76	Innate Immune Recognition Triggers Secretion of Lysosomal Enzymes by Macrophages. Traffic, 2007, 8, 1179-1189.	2.7	67
77	Aggregate Formation by ERp57â€Deficient MHC Class I Peptideâ€Loading Complexes. Traffic, 2007, 8, 1530-1542.	2.7	21
78	A Role for the Endoplasmic Reticulum Protein Retrotranslocation Machinery during Crosspresentation by Dendritic Cells. Immunity, 2006, 25, 607-617.	14.3	258
79	Functional Requirements for the Lysosomal Thiol Reductase GILT in MHC Class II-Restricted Antigen Processing. Journal of Immunology, 2006, 177, 8569-8577.	0.8	53
80	Exposure of the Promonocytic Cell Line THP-1 to <i>Escherichia coli</i> Induces IFN-γ-Inducible Lysosomal Thiol Reductase Expression by Inflammatory Cytokines. Journal of Immunology, 2006, 177, 4833-4840.	0.8	55
81	An N-Linked Glycan Modulates the Interaction between the CD1d Heavy Chain and β2-Microglobulin. Journal of Biological Chemistry, 2006, 281, 40369-40378.	3.4	28
82	Stoichiometric tapasin interactions in the catalysis of major histocompatibility complex class I molecule assembly. Immunology, 2005, 114, 346-353.	4.4	27
83	Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nature Immunology, 2005, 6, 107-113.	14.5	166
84	Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO Journal, 2005, 24, 3613-3623.	7.8	151
85	Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunological Reviews, 2005, 207, 145-157.	6.0	384
86	Antigen processing and presentation. Immunological Reviews, 2005, 207, 5-7.	6.0	51
87	Differential Requirements for Endosomal Reduction in the Presentation of Two H2-Ed-Restricted Epitopes from Influenza Hemagglutinin. Journal of Immunology, 2004, 172, 6607-6614.	0.8	34
88	Lipid-protein interactions: Biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1022-1026.	7.1	73
89	Major Histocompatibility Complex Class I Molecules Expressed with Monoglucosylated N-Linked Glycans Bind Calreticulin Independently of Their Assembly Status. Journal of Biological Chemistry, 2004, 279, 25112-25121.	3.4	39
90	CELL BIOLOGY: Cutting and Pasting Antigenic Peptides. Science, 2004, 304, 525-527.	12.6	17

#	Article	IF	CITATIONS
91	Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nature Immunology, 2004, 5, 175-181.	14.5	197
92	Cellular mechanisms governing cross-presentation of exogenous antigens. Nature Immunology, 2004, 5, 678-684.	14.5	351
93	Recent developments in MHC-class-I-mediated antigen presentation. Current Opinion in Immunology, 2004, 16, 82-89.	5.5	76
94	Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12889-12894.	7.1	334
95	Regulation of MHC Class I Transport in Human Dendritic Cells and the Dendritic-Like Cell Line KG-1. Journal of Immunology, 2003, 170, 4178-4188.	0.8	97
96	Tapasin Is a Facilitator, Not an Editor, of Class I MHC Peptide Binding. Journal of Immunology, 2003, 171, 5287-5295.	0.8	103
97	Identification of Specific Glycoforms of Major Histocompatibility Complex Class I Heavy Chains Suggests That Class I Peptide Loading Is an Adaptation of the Quality Control Pathway Involving Calreticulin and ERp57. Journal of Biological Chemistry, 2002, 277, 46415-46423.	3.4	54
98	Role of the C-terminal propeptide in the activity and maturation of Â-interferon-inducible lysosomal thiol reductase (GILT). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12298-12303.	7.1	26
99	Absence of γ-Interferon–inducible Lysosomal Thiol Reductase in Melanomas Disrupts T Cell Recognition of Select Immunodominant Epitopes. Journal of Experimental Medicine, 2002, 195, 1267-1277.	8.5	123
100	Calnexin, Calreticulin, and ERp57 Cooperate in Disulfide Bond Formation in Human CD1d Heavy Chain. Journal of Biological Chemistry, 2002, 277, 44838-44844.	3.4	104
101	Disulfide Bond Isomerization and the Assembly of MHC Class I-Peptide Complexes. Immunity, 2002, 16, 87-98.	14.3	207
102	Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO Journal, 2002, 21, 1650-1660.	7.8	112
103	Defective Antigen Processing in GILT-Free Mice. Science, 2001, 294, 1361-1365.	12.6	248
104	Glycosylation and the Immune System. Science, 2001, 291, 2370-2376.	12.6	1,487
105	Multiple species express thiol oxidoreductases related to GILT. Immunogenetics, 2001, 53, 342-346.	2.4	40
106	A Role for Calnexin in the Assembly of the MHC Class I Loading Complex in the Endoplasmic Reticulum. Journal of Immunology, 2001, 166, 1703-1709.	0.8	107
107	Intracellular Surveillance: Controlling the Assembly of MHC Class I-Peptide Complexes. Traffic, 2000, 1, 301-305.	2.7	63
108	Gamma-Interferon-inducibleLysosomal Thiol Reductase (GILT). Journal of Biological Chemistry, 2000, 275, 25907-25914.	3.4	170

7

#	Article	IF	CITATIONS
109	Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nature Medicine, 1999, 5, 1039-1043.	30.7	237
110	The nature of the MHC class I peptide loading complex. Immunological Reviews, 1999, 172, 21-28.	6.0	296
111	Thiol oxidation and reduction in MHC-restricted antigen processing and presentation. Immunologic Research, 1999, 19, 191-200.	2.9	19
112	Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules. European Journal of Immunology, 1999, 29, 571-580.	2.9	49
113	The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. European Journal of Immunology, 1999, 29, 1858-1870.	2.9	142
114	The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Current Biology, 1998, 8, 709-713.	3.9	169
115	Genomic analysis of theTapasin gene, located close to theTAP loci in the MHC. European Journal of Immunology, 1998, 28, 459-467.	2.9	71
116	Calnexin expression does not enhance the generation of MHC class I-peptide complexes. European Journal of Immunology, 1998, 28, 907-913.	2.9	27
117	Elucidation of the genetic basis of the antigen presentation defects in the mutant cell line .220 reveals polymorphism and alternative splicing of the tapasin gene. European Journal of Immunology, 1998, 28, 3783-3791.	2.9	45
118	Soluble Tapasin Restores MHC Class I Expression and Function in the Tapasin-Negative Cell Line .220. Immunity, 1998, 8, 221-231.	14.3	260
119	HLA-B27–Restricted Antigen Presentation in the Absence of Tapasin Reveals Polymorphism in Mechanisms of HLA Class I Peptide Loading. Immunity, 1998, 8, 531-542.	14.3	245
120	MECHANISMS OF MHC CLASS I–RESTRICTED ANTIGEN PROCESSING. Annual Review of Immunology, 1998, 16, 323-358.	21.8	948
121	Genomic analysis of the Tapasin gene, located close to the TAP loci in the MHC. European Journal of Immunology, 1998, 28, 459-467.	2.9	2
122	Calnexin expression does not enhance the generation of MHC class I-peptide complexes. European Journal of Immunology, 1998, 28, 907-913.	2.9	1
123	A Critical Role for Tapasin in the Assembly and Function of Multimeric MHC Class I-TAP Complexes. Science, 1997, 277, 1306-1309.	12.6	477
124	Negative Regulation by HLA-DO of MHC Class II-Restricted Antigen Processing. Science, 1997, 278, 106-109.	12.6	220
125	Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics, 1997, 46, 477-483.	2.4	77
126	Invariant Chain Structure and MHC Class II Function. Cell, 1996, 84, 505-507.	28.9	325

8

#	Article	IF	CITATIONS
127	Roles for Calreticulin and a Novel Glycoprotein, Tapasin, in the Interaction of MHC Class I Molecules with TAP. Immunity, 1996, 5, 103-114.	14.3	644
128	Processing and delivery of peptides presented by MHC class I molecules. Current Opinion in Immunology, 1996, 8, 59-67.	5.5	157
129	HLA-DM Interactions with Intermediates in HLA-DR Maturation and a Role for HLA-DM in Stabilizing Empty HLA-DR Molecules. Journal of Experimental Medicine, 1996, 184, 2153-2166.	8.5	198
130	HLA-DM induces clip dissociation from MHC class II αβ dimers and facilitates peptide loading. Cell, 1995, 82, 155-165.	28.9	673
131	Assembly, Transport, and Function of MHC Class II Molecules. Annual Review of Immunology, 1994, 12, 259-291.	21.8	767
132	MHC class l/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature, 1994, 368, 864-867.	27.8	368
133	Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity, 1994, 1, 7-14.	14.3	172
134	In vivo and in vitro formation and dissociation of HLA-DR complexes with invariant chain-derived peptides. Immunity, 1994, 1, 763-774.	14.3	180
135	Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells. Immunity, 1994, 1, 595-606.	14.3	260
136	Transport properties of free and MHC class Il-associated oligomers containing different isoforms of human invariant chain. International Immunology, 1994, 6, 439-451.	4.0	61
137	Assembly and Transport of Class I MHCâ€Peptide Complexes. Novartis Foundation Symposium, 1994, 187, 150-169.	1.1	7
138	Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature, 1992, 355, 644-646.	27.8	341
139	HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature, 1992, 356, 443-446.	27.8	487
140	Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature, 1992, 360, 171-174.	27.8	216
141	HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature, 1992, 360, 474-477.	27.8	364
142	Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature, 1990, 345, 615-618.	27.8	476
143	Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature, 1990, 343, 133-139.	27.8	378
144	Differential transport requirements of HLA and H-2 class I glycoproteins. Immunogenetics, 1989, 29, 380-388.	2.4	142

9

Peter Cresswell

#	Article	IF	CITATIONS
145	An epitope common to HLA class I and class II antigens, Ig light chains, and ? 2-microglobulin. Immunogenetics, 1987, 25, 228-233.	2.4	38
146	Immune recognition of human major histocompatibility antigens: localization by a comprehensive synthetic strategy of the continuous antigenic sites in the first domain of HLA-DR2 β chain. European Journal of Immunology, 1987, 17, 497-502.	2.9	16
147	Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics, 1985, 21, 235-246.	2.4	587
148	Expression of T-lymphoblast-encoded HLA-DR antigens on human T-B lymphoblast hybrids. Immunogenetics, 1983, 17, 411-425.	2.4	14
149	Expression of cell surface lectins on activated human lymphoid cells. European Journal of Immunology, 1982, 12, 570-576.	2.9	27
150	Modulation of cell surface iron transferrin receptors by cellular density and state of activation. Journal of Supramolecular Structure, 1979, 11, 579-586.	2.3	352
151	Antisera to human B-lymphocyte membrane glycoproteins block stimulation in mixed lymphocyte culture. Nature, 1975, 257, 147-149.	27.8	89
152	THE SMALL SUBUNIT OF HL-A ANTIGENS IS ß2-MICROGLOBULIN. Journal of Experimental Medicine, 1973, 138, 1608-1612.	8.5	371
153	Antigen Processing and Presentation Mechanisms in Myeloid Cells. , 0, , 209-223.		5