
Domingo Gomez Pardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ringâ€opening of azetidiniums by nucleophiles. Synthesis of polysubstituted linear amines. Chirality, 2021, 33, 5-21.	2.6	13
2	Synthesis of Azocanes from Piperidines via an Azetidinium Intermediate. Chemistry - A European Journal, 2021, 27, 16325-16328.	3.3	1
3	Azetidiniums: Ringâ€Expansion to Pyrrolidines, Piperidines, Azepanes, and Azocanes. European Journal of Organic Chemistry, 2020, 2020, 7103-7118.	2.4	14
4	Synthesis of 2-Fluoroalkyl 4-Substituted Azepanes. European Journal of Organic Chemistry, 2019, 2019, 5497-5507.	2.4	6
5	Synthesis of αâ€(Trifluoromethyl)pyridazine Derivatives. European Journal of Organic Chemistry, 2018, 2018, 3541-3553.	2.4	15
6	Nickel-Catalyzed System for the Cross-Coupling of Alkenyl Methyl Ethers with Grignard Reagents under Mild Conditions. Organic Letters, 2018, 20, 1815-1818.	4.6	23
7	Synthesis of Optically Active α-Trifluoromethylamines by Rearrangement of β-Amino-α-trifluoromethyl Alcohols. Organic Letters, 2018, 20, 6017-6021.	4.6	9
8	Access to Enantio-enriched Substituted α-Trifluoromethyl Azepanes from <scp>l</scp> -Proline. Organic Letters, 2018, 20, 5019-5022.	4.6	18
9	Synthesis of Functionalized 4â€Fluoropyridazines. Asian Journal of Organic Chemistry, 2017, 6, 927-935.	2.7	23
10	Synthesis of Substituted α-Trifluoromethyl Piperidinic Derivatives. Molecules, 2017, 22, 483.	3.8	7
11	Ring Contraction of 3â€Hydroxyâ€3â€{trifluoromethyl)piperidines: Synthesis of 2â€5ubstituted 2â€{Trifluoromethyl)pyrrolidines. Chemistry - A European Journal, 2015, 21, 12876-12880.	3.3	18
12	Stereoselective Rearrangement of (Trifluoromethyl)prolinols to Enantioenriched 3-Substituted 2-(Trifluoromethyl)piperidines. Organic Letters, 2015, 17, 2916-2919.	4.6	24
13	Synthesis of Aryl Sulfides: Metal-Free C–H Sulfenylation of Electron-Rich Arenes. Organic Letters, 2015, 17, 3898-3901.	4.6	110
14	TFA-promoted direct C–H sulfenylation at the C2 position of non-protected indoles. Chemical Communications, 2015, 51, 13898-13901.	4.1	107
15	Modular, Concise, and Efficient Synthesis of Highly Functionalized 5-Fluoropyridazines by a [2 + 1]/[3 + 2]-Cycloaddition Sequence. Organic Letters, 2015, 17, 3414-3417.	4.6	27
16	Palladium-catalyzed phosphonylation of pyrazoles substituted byÂelectron-withdrawing groups. Tetrahedron, 2015, 71, 7250-7259.	1.9	9
17	Access to Optically Active 3â€Substituted Piperidines by Ring Expansion of Prolinols and Derivatives. Chemistry - A European Journal, 2014, 20, 4516-4525.	3.3	39
18	Enantioselective Synthesis and Physicochemical Properties of Libraries of 3â€Amino―and 3â€Amidofluoropiperidines. Chemistry - A European Journal, 2014, 20, 3813-3824.	3.3	27

Domingo Gomez Pardo

#	Article	IF	CITATIONS
19	Synthesis of LY503430 by using a selective rearrangement of β-amino alcohols induced by DAST. Arkivoc, 2014, 2014, 239-255.	0.5	5
20	Iridium-Catalyzed Hydrogen Transfer: Synthesis of Substituted Benzofurans, Benzothiophenes, and Indoles from Benzyl Alcohols. Organic Letters, 2013, 15, 3876-3879.	4.6	49
21	Catalytic Asymmetric Allylic Alkylation of 3â€Arylated Piperidinâ€2â€ones. European Journal of Organic Chemistry, 2013, 2013, 4979-4985.	2.4	13
22	Palladium-Catalyzed Phosphonylation: Synthesis of C3-, C4-, and C5-Phosphonylated Pyrazoles. Organic Letters, 2013, 15, 5550-5553.	4.6	16
23	Synthesis of 3â€Hydroxypipecolic Acids. European Journal of Organic Chemistry, 2013, 2013, 809-829.	2.4	22
24	XtalFluor-E, an Efficient Coupling Reagent for Amidation of Carboxylic Acids. Organic Letters, 2013, 15, 902-905.	4.6	39
25	Synthesis of Two Neurokinin NK1 Receptor Antagonists: (+)-L-733,060 and (-)-L-733,061. Heterocycles, 2012, 86, 89.	0.7	9
26	Fluorine as a Regiocontrol Element in the Ring Opening of Bicyclic Aziridiniums. Helvetica Chimica Acta, 2012, 95, 2265-2277.	1.6	13
27	Ring Expansion of Cyclic β-Amino Alcohols Induced by Diethylaminosulfur Trifluoride: Synthesis of Cyclic Amines with a Tertiary Fluorine at C3. Journal of Organic Chemistry, 2012, 77, 6087-6099.	3.2	40
28	Access to Optically Active 3â€Aminopiperidines by Ring Expansion of Prolinols: Thermodynamic versus Kinetic Control. European Journal of Organic Chemistry, 2012, 2012, 2023-2040.	2.4	34
29	First Intramolecular Alkylation of Nitriles with Primary and Secondary Alcohols Catalyzed by Iridium Complexes. European Journal of Organic Chemistry, 2012, 2012, 4453-4456.	2.4	32
30	Access to Optically Active 3-Azido- and 3-Aminopiperidine Derivatives by Enantioselective Ring Expansion of Prolinols. Organic Letters, 2011, 13, 4442-4445.	4.6	38
31	Asymmetric Synthesis of an Antagonist of Neurokinin Receptors: SSR 241586. Journal of Organic Chemistry, 2011, 76, 2594-2602.	3.2	31
32	Monoalkylation of Acetonitrile by Primary Alcohols Catalyzed by Iridium Complexes. Organic Letters, 2011, 13, 4084-4087.	4.6	65
33	Enantioselective Synthesis of SSR 241586 by Using an Organo-Catalyzed Henry Reaction. Organic Letters, 2010, 12, 3693-3695.	4.6	31
34	Enantioselective Synthesis of β-Fluoroamines from β-Amino Alcohols: Application to the Synthesis of LY503430. Organic Letters, 2010, 12, 4620-4623.	4.6	33
35	Rearrangement of β-amino alcohols via aziridiniums: a review. Chemical Society Reviews, 2010, 39, 89-102.	38.1	107
36	Ring enlargement and ring contraction induced by DAST. Arkivoc, 2010, 2010, 126-159.	0.5	21

#	Article	IF	CITATIONS
37	Enantioselective Ring Expansion of Prolinols: An Efficient and Short Synthesis of 2-Phenylpiperidin-3-ol Derivatives and 3-Hydroxypipecolic Acids. Synlett, 2009, 2009, 2157-2161.	1.8	11
38	Rearrangement of βâ€∎mino alcohols and application to the synthesis of biologically active compounds. Chirality, 2009, 21, 850-856.	2.6	38
39	Highly Enantioselective Synthesis of Linear βâ€Amino Alcohols. Chemistry - A European Journal, 2009, 15, 1064-1070.	3.3	15
40	Rearrangement of N-alkyl 1,2-amino alcohols. Synthesis of (S)-toliprolol and (S)-propanolol. Tetrahedron, 2009, 65, 6696-6706.	1.9	14
41	<i>Daucus carota</i> Mediated-Reduction of Cyclic 3-Oxo-amines. Organic Letters, 2009, 11, 1245-1248.	4.6	40
42	Syntheses of (S,S)-Reboxetine via a Catalytic Stereospecific Rearrangement of β-Amino Alcohols. Journal of Organic Chemistry, 2008, 73, 707-710.	3.2	51
43	Stereospecific Rearrangement of Î ² -Amino Alcohols Catalyzed by H2SO4. Synlett, 2007, 2007, 2888-2890.	1.8	3
44	Synthesis of Optically Active Substituted 3-Fluoropiperidines from Prolinols by Using DAST. Synlett, 2007, 2007, 0263-0267.	1.8	11
45	Highly Enantioselective Synthesis of β-Amino Alcohols:  A Catalytic Version. Journal of Organic Chemistry, 2007, 72, 6556-6561.	3.2	44
46	Ring Expansion Induced by DAST: Synthesis of Substituted 3â€Fluoropiperidines from Prolinols and 3â€Fluoroazepanes from 2â€Hydroxymethylpiperidines. European Journal of Organic Chemistry, 2007, 2007, 4224-4234.	2.4	45
47	Enantioselective ring expansion of prolinol derivatives. Two formal syntheses of (â^')-swainsonine. Tetrahedron, 2007, 63, 9082-9091.	1.9	48
48	Enantioselective ring expansion of prolinols and ring-closing metathesis: formal synthesis of (-)-swainsonine. Arkivoc, 2007, 2007, 38-45.	0.5	3
49	Highly Enantioselective Synthesis of β-Amino Alcohols. Organic Letters, 2006, 8, 3509-3512.	4.6	29
50	Ring Expansion of Functionalized Octahydroindoles to Enantiopurecis-Decahydroquinolinesâ€. Journal of Organic Chemistry, 2006, 71, 5930-5935.	3.2	24
51	Enantioselective diethylzinc addition to aromatic and aliphatic aldehydes using (3R,5R)-dihydroxypiperidine derivatives catalyst. Tetrahedron, 2006, 62, 2388-2394.	1.9	53
52	Palladium-Catalyzed ?-Arylation of N-Protected 2-Piperidinones ChemInform, 2005, 36, no.	0.0	0
53	Efficient Enantioselective Formal Synthesis of Ro 67-8867, a NMDA 2B Receptor Antagonist. Synlett, 2005, 2005, 1170-1172.	1.8	3
54	A Very Short and Efficient Synthesis of Preclamol. Letters in Organic Chemistry, 2005, 2, 136-138.	0.5	14

#	Article	lF	CITATIONS
55	Simple Preparation of 3-Aryl 2-Piperidinones. Synthesis, 2004, 2004, 2930-2933.	2.3	2
56	Palladium-catalyzed α-arylation of N-protected 2-piperidinones. Tetrahedron, 2004, 60, 9757-9767.	1.9	34
57	Base Effect on the Palladium-Catalyzed α-Arylation of N-Benzyl-2-piperidinones ChemInform, 2004, 35, no.	0.0	0
58	Enantioselective Ring Expansion via Aziridinium Intermediates: Synthesis of Substituted Piperidines from Substituted Pyrrolidines — Synthetic Applications. ChemInform, 2004, 35, no.	0.0	1
59	Palladium-Catalyzed Intermolecular α-Arylation of N-Protected 2-Piperidinones ChemInform, 2003, 34, no.	0.0	Ο
60	Palladium-Catalyzed Intermolecular α-Arylation ofN-Protected 2-Piperidinones. Organic Letters, 2003, 5, 3037-3039.	4.6	68
61	Diastereoselective conjugate addition of organocuprates to chiral racemic olefinic amido esters. Formal total synthesis of paroxetine. New Journal of Chemistry, 2003, 27, 475-482.	2.8	14
62	Base Effect on the Palladium Catalyzed α-Arylation ofN-Benzyl-2-Piperidinones. Synlett, 2003, 2003, 2171-2174.	1.8	26
63	A Formal Synthesis of (â^)-Paroxetine by Enantioselective Ring Enlargement of a Trisubstituted Prolinol. European Journal of Organic Chemistry, 2002, 2002, 3543-3551.	2.4	33
64	A new nitrone from C2 symmetric piperidine for the synthesis of hydroxylated indolizidinone. Tetrahedron Letters, 2002, 43, 9357-9359.	1.4	31
65	Reactivity of α-(Benzoyloxy)crotylstannane with Aldehydes in Liquid Phase and on Solid Support. Synthesis of Substituted Lactones. Journal of Organic Chemistry, 2001, 66, 7195-7198.	3.2	25
66	A short formal synthesis of paroxetine. Diastereoselective cuprate addition to a chiral racemic olefinic amido ester. Tetrahedron Letters, 2001, 42, 7805-7807.	1.4	23
67	The iodocyclization of unsaturated dihydroxysulfonamide derivatives. N- versus O-cyclization. Tetrahedron Letters, 2001, 42, 251-254.	1.4	6
68	Ring expansion: formal total synthesis of (â^')-paroxetine. Tetrahedron Letters, 2001, 42, 5705-5707.	1.4	32
69	Ring Expansion: Synthesis of the Velbanamine Piperidine Core. Synlett, 2001, 2001, 1575-1577.	1.8	28
70	Synthesis of Amino Alcohol Derivatives from (I)-Pyroglutamic Acid on Solid-Phase. Synlett, 2000, 2000, 409-411.	1.8	1
71	Approaches to a synthesis of α-kainic acid. Tetrahedron, 1999, 55, 6153-6166.	1.9	29
72	Radical cyclizations. A convergent total synthesis of (±)-γ-lycorane. Tetrahedron Letters, 1999, 40, 1125-1128.	1.4	31

Domingo Gomez Pardo

#	Article	IF	CITATIONS
73	Ring Expansion – Formation of Optically Active 3-Hydroxypiperidines from Pyrrolidinemethanol Derivatives. European Journal of Organic Chemistry, 1999, 1999, 1693-1699.	2.4	69
74	Radical Cyclizations – Synthesis of γ-Lycorane. European Journal of Organic Chemistry, 1999, 1999, 1925, 1925-1933.	2.4	44
75	Ring Expansion – Formation of Optically Active 3-Hydroxypiperidines from Pyrrolidinemethanol Derivatives. , 1999, 1999, 1693.		2
76	A convenient route to spiropyrrolidinyl-oxindole alkaloids via C-3 substituted ene-pyrrolidine carbamate radical cyclization. Tetrahedron Letters, 1998, 39, 2331-2332.	1.4	27
77	Synthesis of spiro[quinoline-2,4′-piperidines] Heck versus radical reaction. Tetrahedron Letters, 1998, 39, 2965-2968.	1.4	20
78	Synthesis of Spiro[benzazepine-2,4â€~-piperidine]. Journal of Organic Chemistry, 1998, 63, 4554-4557.	3.2	17
79	A Formal Synthesis of (-)-α-Kainic Acid. Synlett, 1998, 1998, 507-509.	1.8	20
80	Synthesis of (-)-Pseudoconhydrine through Ring Enlargement of a L-Proline Derivative. Synlett, 1997, 1997, 905-906.	1.8	44
81	An Easy and Efficient Access to 2-Bromo-4-methoxyaniline. Synthetic Communications, 1997, 27, 3525-3527.	2.1	11
82	A Convenient Procedure for the Conversion Of N-Boc Protected Pyrrolidinone Derivatives Into Their Corresponding Enecarbamates. Synthetic Communications, 1997, 27, 2769-2776.	2.1	5
83	A SHORT AND EFFICIENT SYNTHESIS OF ZAMIFENACIN A MUSCARINIC M3 RECEPTOR ANTAGONIST. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1343-1344.	2.2	26
84	An easy access to substituted aminopyranones from L-pyroglutamic acid. Tetrahedron Letters, 1996, 37, 8173-8174.	1.4	8
85	The thermal rearrangement of N-alkyl-N-vinylpropargylamines into 2-methylpyrroles. A new synthesis of annulated[b]pyrroles. Tetrahedron Letters, 1996, 37, 6709-6710.	1.4	28
86	A Short Enantioselective Access to Pumiliotoxin 251D from L-Proline. Synlett, 1996, 1996, 909-910.	1.8	14
87	Formation of optically active 3-hydroxypiperidines. Tetrahedron Letters, 1995, 36, 549-552.	1.4	56
88	Synthesis of 2-(Alkylamino)benzonitriles from α-(Bromoarylamino)nitriles. Synthesis, 1995, 1995, 1368-1370.	2.3	14
89	A very useful and mild method for the protection and deprotection of carboxylic acids. Tetrahedron Letters, 1994, 35, 1539-1540.	1.4	30
90	New approaches to Corynanthe alkaloids involving the conjugate addition of dialkyl malonates to unsaturated thiolactams:Synthesis of (±)-3-epi-dihydrocorynantheol. Tetrahedron Letters, 1992, 33, 6633-6636.	1.4	12

#	Article	IF	CITATIONS
91	A new [ABCD → ABCDE] cycloaddition strategy for the approach to Yohimbe alkaloids : Stereoselective synthesis of (±)-3-epi-allo-yohimbone. Tetrahedron Letters, 1992, 33, 6637-6640.	1.4	12
92	Diels-Alder cycloadditions of electron-rich, electron-deficient, and push-pull dienes with cyclic dienophiles: high-pressure-induced reactions and theoretical calculations. Journal of Organic Chemistry, 1991, 56, 4135-4141.	3.2	37
93	β-Keto -Î^-valerolactone: synthesis and use as methylvinylketone anion equivalent in michael additions. Tetrahedron Letters, 1991, 32, 3063-3066.	1.4	8
94	Revision of structure of a "C56O3―substance generated in the pyrolysis of biomass materials. Tetrahedron Letters, 1991, 32, 3067-3068.	1.4	7