
Alessandro Gandini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7438718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Furan Polymers: State of the Art and Perspectives. Macromolecular Materials and Engineering, 2022, 307, .	3.6	31
2	The contribution of bisfurfurylamine to the development and properties of polyureas. Polymer International, 2020, 69, 688-692.	3.1	6
3	A Novel Approach for the Synthesis of Thermoâ€Responsive Coâ€Polyesters Incorporating Reversible Diels–Alder Adducts. Macromolecular Chemistry and Physics, 2019, 220, 1900247.	2.2	12
4	Thermally reversible nanocellulose hydrogels synthesized via the furan/maleimide Diels-Alder click reaction in water. International Journal of Biological Macromolecules, 2019, 141, 493-498.	7.5	25
5	Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 2019, 88, 241-264.	24.7	447
6	Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers, 2018, 181, 256-263.	10.2	19
7	Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. Journal of Materials Chemistry A, 2017, 5, 13098-13103.	10.3	61
8	Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose. International Journal of Biological Macromolecules, 2017, 95, 762-768.	7.5	25
9	A minimalist furan–maleimide AB-type monomer and its thermally reversible Diels–Alder polymerization. RSC Advances, 2016, 6, 45696-45700.	3.6	13
10	Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks. International Journal of Biological Macromolecules, 2016, 93, 686-694.	7.5	12
11	Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 2016, 116, 1637-1669.	47.7	610
12	From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 2015, 48, 1-39.	24.7	530
13	Furan–chitosan hydrogels based on click chemistry. Iranian Polymer Journal (English Edition), 2015, 24, 349-357.	2.4	20
14	N-(furfural) chitosan hydrogels based on Diels–Alder cycloadditions and application as microspheres for controlled drug release. Carbohydrate Polymers, 2015, 128, 220-227.	10.2	71
15	Thermoreversible crosslinked thermoplastic starch. Polymer International, 2015, 64, 1366-1372.	3.1	13
16	Hydrogel synthesis by aqueous Dielsâ€Alder reaction between furan modified methacrylate and polyetheramineâ€based bismaleimides. Journal of Polymer Science Part A, 2015, 53, 699-708.	2.3	27
17	Reversible click chemistry at the service of macromolecular materials. Part 4: Diels–Alder non-linear polycondensations involving polyfunctional furan and maleimide monomers. Polymer Chemistry, 2013, 4, 1364-1371.	3.9	39
18	Thermoreversible nonlinear dielsâ€∎lder polymerization of furan/plant oil monomers. Journal of Polymer Science Part A, 2013, 51, 2260-2270.	2.3	43

Alessandro Gandini

#	Article	IF	CITATIONS
19	Effect of the molecular structure on the reactivity in a family of tetra-amine compounds derived from Jeffamines. Macromolecular Research, 2012, 20, 800-809.	2.4	9
20	Reversible polymerization of novel monomers bearing furan and plant oil moieties: a double click exploitation of renewable resources. RSC Advances, 2012, 2, 2966.	3.6	44
21	Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chemistry, 2011, 13, 419.	9.0	126
22	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	9.0	610
23	Reversible click chemistry at the service of macromolecular materials. Polymer Chemistry, 2011, 2, 1713.	3.9	48
24	Polyimides based on furanic diamines and aromatic dianhydrides: synthesis, characterization and properties. Polymer Bulletin, 2011, 67, 1111-1122.	3.3	19
25	Novel suberinâ€based biopolyesters: From synthesis to properties. Journal of Polymer Science Part A, 2011, 49, 2281-2291.	2.3	48
26	Synthesis and characterization of poly(2,5â€furan dicarboxylate)s based on a variety of diols. Journal of Polymer Science Part A, 2011, 49, 3759-3768.	2.3	305
27	Unravelling the detailed microstructure of a semiconducting (quasiâ€metal) soluble polymer incorporating conjugated thienylene methine sequences. Journal of Polymer Science Part A, 2011, 49, 5227-5238.	2.3	1
28	Novel materials based on chitosan and cellulose. Polymer International, 2011, 60, 875-882.	3.1	89
29	Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 2010, 17, 875-889.	4.9	185
30	Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose, 2010, 17, 1045-1065.	4.9	146
31	Reversible click chemistry at the service of macromolecular materials. 2. Thermoreversible polymers based on the Dielsâ€Alder reaction of an Aâ€B furan/maleimide monomer. Journal of Polymer Science Part A, 2010, 48, 2053-2056.	2.3	64
32	Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polymer Chemistry, 2010, 1, 245-251.	3.9	264
33	Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties. Cellulose, 2009, 16, 239-246.	4.9	27
34	The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources. Journal of Polymer Science Part A, 2009, 47, 295-298.	2.3	425
35	Acid-Catalyzed Polycondensation of 2-Acetoxymethyl-3,4-dimethylthiophene. Access to a Novel Poly(thienylene methine) with Alternating Aromatic- and Quinoid-like Structures. Macromolecules, 2009, 42, 2455-2461.	4.8	5
36	Materials from renewable resources based on furan monomers and furan chemistry: work in progress. Journal of Materials Chemistry, 2009, 19, 8656.	6.7	224

ALESSANDRO GANDINI

#	Article	IF	CITATIONS
37	Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chemistry, 2009, 11, 2023.	9.0	216
38	Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 2008, 41, 9491-9504.	4.8	985
39	The bulk oxypropylation of chitin and chitosan and the characterization of the ensuing polyols. Green Chemistry, 2008, 10, 93-97.	9.0	45
40	Recent Contributions to the Realm of Polymers from Renewable Resources. ACS Symposium Series, 2007, , 48-60.	0.5	1
41	Surface and In-Depth Modification of Cellulose Fibers. ACS Symposium Series, 2007, , 93-106.	0.5	1
42	Furan Chemistry at the Service of Functional Macromolecular Materials: The Reversible Diels-Alder Reaction. ACS Symposium Series, 2007, , 280-295.	0.5	24
43	A preliminary study of polyureas and poly(parabanic acid)s incorporating furan rings. Polymer Bulletin, 2006, 57, 43-50.	3.3	15
44	Preparation of aqueous anionic poly(urethane-urea) dispersions. Influence of the incorporation of acrylic, polycarbonate and perfluoro-oligoether diols on the dispersion and polymer properties. Polymers for Advanced Technologies, 2005, 16, 840-845.	3.2	11
45	Crosslinking starch with dielsâ€alder reaction: <scp>Waterâ€Soluble</scp> materials and waterâ€mediated processes. Polymer International, 0, , .	3.1	4