List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7438144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis. BMC Complementary and Alternative Medicine, 2014, 14, 19.	3.7	97
2	Resveratrol Alleviates Inflammatory Responses and Oxidative Stress in Rat Kidney Ischemia-Reperfusion Injury and H2O2-Induced NRK-52E Cells via the Nrf2/TLR4/NF-κB Pathway. Cellular Physiology and Biochemistry, 2018, 45, 1677-1689.	1.6	97
3	The mTOR signal regulates myeloid-derived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Cell Death and Disease, 2017, 8, e2695-e2695.	6.3	81
4	Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death and Disease, 2017, 8, e2725-e2725.	6.3	56
5	Baicalin Ameliorates H2O2 Induced Cytotoxicity in HK-2 Cells through the Inhibition of ER Stress and the Activation of Nrf2 Signaling. International Journal of Molecular Sciences, 2014, 15, 12507-12522.	4.1	45
6	A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2306-2317.	3.8	45
7	Serum-stabilized Naked Caspase-3 siRNA Protects Autotransplant Kidneys in a Porcine Model. Molecular Therapy, 2014, 22, 1817-1828.	8.2	41
8	A novel cytoprotective peptide protects mesenchymal stem cells against mitochondrial dysfunction and apoptosis induced by starvation via Nrf2/Sirt3/FoxO3a pathway. Journal of Translational Medicine, 2017, 15, 33.	4.4	37
9	Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway. Journal of Translational Medicine, 2015, 13, 355.	4.4	36
10	Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis. Frontiers in Medicine, 2019, 6, 269.	2.6	35
11	Skewed T-helper (Th)1/2- and Th17/T regulatory-cell balances in patients with renal cell carcinoma. Molecular Medicine Reports, 2015, 11, 947-953.	2.4	34
12	HMGB1 promotes myeloid-derived suppressor cells and renal cell carcinoma immune escape. Oncotarget, 2017, 8, 63290-63298.	1.8	34
13	The Crosstalk between Myeloid Derived Suppressor Cells and Immune Cells: To Establish Immune Tolerance in Transplantation. Journal of Immunology Research, 2016, 2016, 1-6.	2.2	32
14	Immune Cells in Ischemic Acute Kidney Injury. Current Protein and Peptide Science, 2019, 20, 770-776.	1.4	31
15	Snai1-induced partial epithelial–mesenchymal transition orchestrates p53–p21-mediated G2/M arrest in the progression of renal fibrosis via NF-κB-mediated inflammation. Cell Death and Disease, 2021, 12, 44.	6.3	30
16	Complement Inhibitor CRIg/FH Ameliorates Renal Ischemia Reperfusion Injury via Activation of PI3K/AKT Signaling. Journal of Immunology, 2018, 201, 3717-3730.	0.8	24
17	Discrepant mRNA and Protein Expression in Immune Cells. Current Genomics, 2020, 21, 560-563.	1.6	23
18	Baicalin ameliorates renal fibrosis via inhibition of transforming growth factor Î ² 1 production and	2.4	22

⁸ downstream signal transduction. Molecular Medicine Reports, 2017, 15, 1702-1712.

#	Article	IF	CITATIONS
19	Transplantation of Telocytes Attenuates Unilateral Ureter Obstruction-Induced Renal Fibrosis in Rats. Cellular Physiology and Biochemistry, 2018, 46, 2056-2071.	1.6	20
20	Endothelial Cells in Antibody-Mediated Rejection of Kidney Transplantation: Pathogenesis Mechanisms and Therapeutic Implications. Journal of Immunology Research, 2017, 2017, 1-9.	2.2	19
21	Proteome Analysis of Renoprotection Mediated by a Novel Cyclic Helix B Peptide in Acute Kidney Injury. Scientific Reports, 2016, 5, 18045.	3.3	18
22	Prediction of renal allograft chronic rejection using a model based on contrastâ€enhanced ultrasonography. Microcirculation, 2019, 26, e12544.	1.8	18
23	Mesenchymal Stem Cell Protects Injured Renal Tubular Epithelial Cells by Regulating mTOR-Mediated Th17/Treg Axis. Frontiers in Immunology, 2021, 12, 684197.	4.8	17
24	Prediction of Renal Allograft Acute Rejection Using a Novel Non-Invasive Model Based on Acoustic Radiation Force Impulse. Ultrasound in Medicine and Biology, 2016, 42, 2167-2179.	1.5	15
25	Protective effects of cyclic helix B peptide on aristolochic acid induced acute kidney injury. Biomedicine and Pharmacotherapy, 2017, 94, 1167-1175.	5.6	13
26	Cyclic helix B peptide protects HK-2 cells from oxidative stress by inhibiting ER stress and activating Nrf2 signalling and autophagy. Molecular Medicine Reports, 2017, 16, 8055-8061.	2.4	12
27	Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Current Gene Therapy, 2019, 19, 81-92.	2.0	12
28	Myeloid-Derived Suppressor Cells Alleviate Renal Fibrosis Progression via Regulation of CCL5-CCR5 Axis. Frontiers in Immunology, 2021, 12, 698894.	4.8	12
29	Single-cell Sequencing in the Field of Stem Cells. Current Genomics, 2020, 21, 576-584.	1.6	12
30	Network analysis reveals roles of inflammatory factors in different phenotypes of kidney transplant patients. Journal of Theoretical Biology, 2014, 362, 62-68.	1.7	11
31	Cyclic helix B peptide ameliorates acute myocardial infarction in mice by inhibiting apoptosis and inflammatory responses. Cell Death Discovery, 2019, 5, 78.	4.7	11
32	Cyclic helix B peptide ameliorates renal tubulointerstitial fibrosis induced by unilateral ureter obstruction via inhibiting NLRP3 pathway. Annals of Translational Medicine, 2020, 8, 167-167.	1.7	11
33	Effects of preoperative hepatitis B virus infection, hepatitis C virus infection, and coinfection on the development of newâ€onset diabetes after kidney transplantation. Journal of Diabetes, 2019, 11, 370-378.	1.8	10
34	Early- and late-onset severe pneumonia after renal transplantation. International Journal of Clinical and Experimental Medicine, 2015, 8, 1324-32.	1.3	10
35	High-mobility group box 1 protein antagonizes the immunosuppressive capacity and therapeutic effect of mesenchymal stem cells in acute kidney injury. Journal of Translational Medicine, 2020, 18, 175.	4.4	9
36	Comprehensive Molecular and Cellular Characterization of Acute Kidney Injury Progression to Renal Fibrosis. Frontiers in Immunology, 2021, 12, 699192.	4.8	9

#	Article	IF	CITATIONS
37	Inhibition of histone methyltransferase EZH2 ameliorates early acute renal allograft rejection in rats. BMC Immunology, 2016, 17, 41.	2.2	8
38	Histone Methylation Inhibitor DZNep Ameliorated the Renal Ischemia-Reperfusion Injury via Inhibiting TIM-1 Mediated T Cell Activation. Frontiers in Medicine, 2020, 7, 305.	2.6	7
39	The mTOR Deficiency in Monocytic Myeloid-Derived Suppressor Cells Protects Mouse Cardiac Allografts by Inducing Allograft Tolerance. Frontiers in Immunology, 2021, 12, 661338.	4.8	7
40	GC/MS-based urine metabolomics analysis of renal allograft recipients with acute rejection. Journal of Translational Medicine, 2018, 16, 202.	4.4	6
41	Sites of gastrointestinal lesion induced by mycophenolate mofetil: a comparison with enteric-coated mycophenolate sodium in rats. BMC Pharmacology & Toxicology, 2018, 19, 39.	2.4	6
42	Downregulation of endothelin A receptor (ETaR) ameliorates renal ischemia reperfusion injury by increasing nitric oxide production. Life Sciences, 2019, 228, 295-304.	4.3	6
43	CHBP induces stronger immunosuppressive CD127+ M-MDSC via erythropoietin receptor. Cell Death and Disease, 2021, 12, 177.	6.3	6
44	Association between preoperative lipid profiles and newâ€onset diabetes after transplantation in Chinese kidney transplant recipients: A retrospective cohort study. Journal of Clinical Laboratory Analysis, 2021, 35, e23867.	2.1	5
45	Monocytic Myeloid-Derived Suppressor Cells Inhibit Myofibroblastic Differentiation in Mesenchymal Stem Cells Through IL-15 Secretion. Frontiers in Cell and Developmental Biology, 2022, 10, 817402.	3.7	5
46	Transcriptional profile changes after treatment of ischemia reperfusion injury-induced kidney fibrosis with 181²-glycyrrhetinic acid. Renal Failure, 2022, 44, 660-671.	2.1	5
47	Gene Therapy in Kidney Transplantation: Evidence of Efficacy and Future Directions. Current Gene Therapy, 2018, 17, 434-441.	2.0	4
48	Cyclic Helix B Peptide Prolongs Skin Allograft Survival via Inhibition of B Cell Immune Responses in a Murine Model. Frontiers in Immunology, 2021, 12, 682749.	4.8	3
49	Poly(I:C)-Induced Mesenchymal Stem Cells Protect the Kidney Against Ischemia/Reperfusion Injury via the TLR3/PI3K Pathway. Frontiers in Medicine, 2021, 8, 755849.	2.6	3
50	Interleukinâ€2 receptor antagonists: Protective factors against newâ€onset diabetes after renal transplantation. Journal of Diabetes, 2018, 10, 857-865.	1.8	2
51	Carbamazepine-induced immune thrombocytopenia confirmed by modified MASPAT test. Transfusion and Apheresis Science, 2021, , 103228.	1.0	2
52	Myeloid-derived suppressor cell (MDSC) key genes analysis in rat anti-CD28-induced immune tolerance kidney transplantation. Translational Andrology and Urology, 2021, 10, 204-214.	1.4	2
53	A Nomogram for Predicting BK Virus Activation in Kidney Transplantation Recipients Using Clinical Risk Factors. Frontiers in Medicine, 2022, 9, 770699.	2.6	2
54	Bioinformatics analysis of pathways of renal infiltrating macrophages in different renal disease models. Translational Andrology and Urology, 2021, 10, 4333-4343.	1.4	2

#	Article	IF	CITATIONS
55	Tolerance induction with donor hematopoietic stem cell infusion in kidney transplantation: a single-center experience in China with a 10-year follow-up. Annals of Translational Medicine, 2020, 8, 1378-1378.	1.7	1
56	Dynamic change of glomerular filtration rate in the early stage is associated with kidney allograft status: a preliminary report. European Journal of Medical Research, 2014, 19, 72.	2.2	0
57	Editorial: Fighting Against Kidney Injury. Current Protein and Peptide Science, 2017, 18, 1182.	1.4	0