
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743800/publications.pdf Version: 2024-02-01

IVO MUELLER

#	Article	IF	CITATIONS
1	Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitology International, 2022, 87, 102492.	1.3	12
2	Global diversity and balancing selection of 23 leading Plasmodium falciparum candidate vaccine antigens. PLoS Computational Biology, 2022, 18, e1009801.	3.2	14
3	PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus. Communications Biology, 2022, 5, 168.	4.4	11
4	Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Medicine, 2022, 20, 89.	5.5	7
5	Developing sero-diagnostic tests to facilitate Plasmodium vivax Serological Test-and-Treat approaches: modeling the balance between public health impact and overtreatment. BMC Medicine, 2022, 20, 98.	5.5	10
6	Global Population Genomics of Two Subspecies of <i>Cryptosporidium hominis</i> during 500 Years of Evolution. Molecular Biology and Evolution, 2022, 39, .	8.9	16
7	Comparison of total immunoglobulin G antibody responses to different protein fragments of Plasmodium vivax Reticulocyte binding protein 2b. Malaria Journal, 2022, 21, 71.	2.3	2
8	Mobility evaluation by GPS tracking in a rural, low-income population in Cambodia. PLoS ONE, 2022, 17, e0266460.	2.5	1
9	Editorial on the special issue on Plasmodium vivax: Current situation and challenges towards elimination. Parasitology International, 2022, 89, 102594.	1.3	1
10	Malaria transmission structure in the Peruvian Amazon through antibody signatures to Plasmodium vivax. PLoS Neglected Tropical Diseases, 2022, 16, e0010415.	3.0	6
11	Plasmodium vivax malaria serological exposure markers: Assessing the degree and implications of cross-reactivity with P.Âknowlesi. Cell Reports Medicine, 2022, 3, 100662.	6.5	6
12	Comparative genomics revealed adaptive admixture in Cryptosporidium hominis in Africa. Microbial Genomics, 2021, 7, .	2.0	13
13	Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts. PLoS Neglected Tropical Diseases, 2021, 15, e0009165.	3.0	17
14	Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe, The, 2021, 2, e60-e69.	7.3	78
15	Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites. Scientific Reports, 2021, 11, 4127.	3.3	21
16	The top 1%: quantifying the unequal distribution of malaria in Brazil. Malaria Journal, 2021, 20, 87.	2.3	27
17	An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 2021, 6, 42.	1.8	97
18	Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b. Nature Communications, 2021, 12, 1538.	12.8	6

#	Article	IF	CITATIONS
19	Estimated impact of tafenoquine for Plasmodium vivax control and elimination in Brazil: A modelling study. PLoS Medicine, 2021, 18, e1003535.	8.4	23
20	Gametocyte carriage of Plasmodium falciparum (pfs25) and Plasmodium vivax (pvs25) during mass screening and treatment in West Timor, Indonesia: a longitudinal prospective study. Malaria Journal, 2021, 20, 177.	2.3	10
21	IgG Antibody Responses Are Preferential Compared With IgM for Use as Serological Markers for Detecting Recent Exposure to <i>Plasmodium vivax</i> Infection. Open Forum Infectious Diseases, 2021, 8, ofab228.	0.9	8
22	High Antibodies to VAR2CSA in Response to Malaria Infection Are Associated With Improved Birthweight in a Longitudinal Study of Pregnant Women. Frontiers in Immunology, 2021, 12, 644563.	4.8	3
23	Application of 23 Novel Serological Markers for Identifying Recent Exposure to Plasmodium vivax Parasites in an Endemic Population of Western Thailand. Frontiers in Microbiology, 2021, 12, 643501.	3.5	9
24	Kinetics of the Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Response and Serological Estimation of Time Since Infection. Journal of Infectious Diseases, 2021, 224, 1489-1499.	4.0	32
25	An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 2021, 6, 42.	1.8	51
26	Reduced risk of placental parasitemia associated with complement fixation on Plasmodium falciparum by antibodies among pregnant women. BMC Medicine, 2021, 19, 201.	5.5	10
27	Investigating differences in village-level heterogeneity of malaria infection and household risk factors in Papua New Guinea. Scientific Reports, 2021, 11, 16540.	3.3	12
28	Identification of the asymptomatic Plasmodium falciparum and Plasmodium vivax gametocyte reservoir under different transmission intensities. PLoS Neglected Tropical Diseases, 2021, 15, e0009672.	3.0	12
29	Surveillance of molecular markers of Plasmodium falciparum artemisinin resistance (kelch13) Tj ETQq1 1 0.7843 and Drug Resistance, 2021, 16, 188-193.	14 rgBT /C 3.4	Overlock 10 15
30	Sensitive detection of Plasmodium vivax malaria by the rotating-crystal magneto-optical method in Thailand. Scientific Reports, 2021, 11, 18547.	3.3	2
31	SARS-CoV-2 Multi-Antigen Serology Assay. Methods and Protocols, 2021, 4, 72.	2.0	4
32	Multiplicity of Asymptomatic Plasmodium falciparum Infections and Risk of Clinical Malaria: A Systematic Review and Pooled Analysis of Individual Participant Data. Journal of Infectious Diseases, 2020, 221, 775-785.	4.0	24
33	Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Molecular Biology and Evolution, 2020, 37, 773-785.	8.9	38
34	Monitoring <i>Plasmodium falciparum</i> and <i>Plasmodium vivax</i> using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Molecular Ecology, 2020, 29, 4525-4541.	3.9	15
35	Studying Land Cover Changes in a Malaria-Endemic Cambodian District: Considerations and Constraints. Remote Sensing, 2020, 12, 2972.	4.0	7
36	Decreased bioefficacy of long-lasting insecticidal nets and the resurgence of malaria in Papua New Guinea. Nature Communications, 2020, 11, 3646.	12.8	30

#	Article	IF	CITATIONS
37	Forest malaria in Cambodia: the occupational and spatial clustering of Plasmodium vivax and Plasmodium falciparum infection risk in a cross-sectional survey in Mondulkiri province, Cambodia. Malaria Journal, 2020, 19, 413.	2.3	30
38	SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malaria Journal, 2020, 19, 375.	2.3	25
39	Transcriptional Memory-Like Imprints and Enhanced Functional Activity in γδT Cells Following Resolution of Malaria Infection. Frontiers in Immunology, 2020, 11, 582358.	4.8	8
40	Utility of ultra-sensitive qPCR to detect Plasmodium falciparum and Plasmodium vivax infections under different transmission intensities. Malaria Journal, 2020, 19, 319.	2.3	15
41	Cytokine signatures ofÂPlasmodium vivax infection during pregnancy and delivery outcomes. PLoS Neglected Tropical Diseases, 2020, 14, e0008155.	3.0	8
42	Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nature Medicine, 2020, 26, 741-749.	30.7	90
43	<i>Plasmodium vivax</i> spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13056-13065.	7.1	29
44	The epidemiology of Plasmodium falciparum and Plasmodium vivax in East Sepik Province, Papua New Guinea, pre- and post-implementation of national malaria control efforts. Malaria Journal, 2020, 19, 198.	2.3	12
45	Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nature Communications, 2020, 11, 953.	12.8	31
46	The risk of Plasmodium vivax parasitaemia after P. falciparum malaria: An individual patient data meta-analysis from the WorldWide Antimalarial Resistance Network. PLoS Medicine, 2020, 17, e1003393.	8.4	32
47	A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MACPIX). PLoS ONE, 2020, 15, e0238010.	2.5	15
48	Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLoS Pathogens, 2020, 16, e1009133.	4.7	81
49	Title is missing!. , 2020, 17, e1003393.		0
50	Title is missing!. , 2020, 17, e1003393.		0
51	Title is missing!. , 2020, 17, e1003393.		0
52	Title is missing!. , 2020, 17, e1003393.		0
53	Title is missing!. , 2020, 17, e1003393.		0
54	Title is missing!. , 2020, 15, e0238010.		0

4

#	Article	lF	CITATIONS
55	Title is missing!. , 2020, 15, e0238010.		Ο
56	Title is missing!. , 2020, 15, e0238010.		0
57	Title is missing!. , 2020, 15, e0238010.		0
58	Title is missing!. , 2020, 15, e0238010.		0
59	Title is missing!. , 2020, 15, e0238010.		0
60	A Randomized Open-Label Evaluation of the Antimalarial Prophylactic Efficacy of Azithromycin-Piperaquine versus Sulfadoxine-Pyrimethamine in Pregnant Papua New Guinean Women. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
61	Protective Immunity against Severe Malaria in Children Is Associated with a Limited Repertoire of Antibodies to Conserved PfEMP1 Variants. Cell Host and Microbe, 2019, 26, 579-590.e5.	11.0	40
62	Antibodies to Plasmodium vivax reticulocyte binding protein 2b are associated with protection against P. vivax malaria in populations living in low malaria transmission regions of Brazil and Thailand. PLoS Neglected Tropical Diseases, 2019, 13, e0007596.	3.0	18
63	Microscopic and submicroscopic Plasmodium falciparum infection, maternal anaemia and adverse pregnancy outcomes in Papua New Guinea: a cohort study. Malaria Journal, 2019, 18, 302.	2.3	16
64	The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Medicine, 2019, 16, e1002928.	8.4	27
65	Acquisition of Antibodies Against Endothelial Protein C Receptor–Binding Domains of <i>Plasmodium falciparum</i> Erythrocyte Membrane Protein 1 in Children with Severe Malaria. Journal of Infectious Diseases, 2019, 219, 808-818.	4.0	22
66	Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands. Malaria Journal, 2019, 18, 106.	2.3	9
67	Retrospective study on the usefulness of pulse oximetry for the identification of young children with severe illnesses and severe pneumonia in a rural outpatient clinic of Papua New Guinea. PLoS ONE, 2019, 14, e0213937.	2.5	8
68	Longitudinal tracking and quantification of individual Plasmodium falciparum clones in complex infections. Scientific Reports, 2019, 9, 3333.	3.3	36
69	Adherence to intermittent preventive treatment for malaria in Papua New Guinean infants: A pharmacological study alongside the randomized controlled trial. PLoS ONE, 2019, 14, e0210789.	2.5	3
70	Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of <i>Plasmodium falciparum</i> into human erythrocytes. Cellular Microbiology, 2019, 21, e13030.	2.1	34
71	The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nature Communications, 2019, 10, 1433.	12.8	121
72	Highly heterogeneous residual malaria risk in western Thailand. International Journal for Parasitology, 2019, 49, 455-462.	3.1	38

#	Article	IF	CITATIONS
73	Targets of complement-fixing antibodies in protective immunity against malaria in children. Nature Communications, 2019, 10, 610.	12.8	76
74	Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical Malaria. PLoS Neglected Tropical Diseases, 2019, 13, e0006987.	3.0	29
75	Sulphadoxine-pyrimethamine plus azithromycin may improve birth outcomes through impacts on inflammation and placental angiogenesis independent of malarial infection. Scientific Reports, 2019, 9, 2260.	3.3	13
76	Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children. BMC Medicine, 2019, 17, 220.	5.5	19
77	Repeated mosquito net distributions, improved treatment, and trends in malaria cases in sentinel health facilities in Papua New Guinea. Malaria Journal, 2019, 18, 364.	2.3	13
78	Antibody Targets on the Surface of <i>Plasmodium falciparum–</i> Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children. Journal of Infectious Diseases, 2019, 219, 819-828.	4.0	28
79	Priority use cases for antibody-detecting assays of recent malaria exposure as tools to achieve and sustain malaria elimination. Gates Open Research, 2019, 3, 131.	1.1	43
80	Indigenous Plasmodium malariae Infection in an Endemic Population at the Thai–Myanmar Border. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1164-1169.	1.4	6
81	Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. Infection, Genetics and Evolution, 2018, 58, 83-95.	2.3	19
82	Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses. Malaria Journal, 2018, 17, 170.	2.3	35
83	High proportions of asymptomatic and submicroscopic Plasmodium vivax infections in a peri-urban area of low transmission in the Brazilian Amazon. Parasites and Vectors, 2018, 11, 194.	2.5	54
84	Negligible Impact of Mass Screening and Treatment on Mesoendemic Malaria Transmission at West Timor in Eastern Indonesia: A Cluster-Randomized Trial. Clinical Infectious Diseases, 2018, 67, 1364-1372.	5.8	30
85	Human Immunization With a Polymorphic Malaria Vaccine Candidate Induced Antibodies to Conserved Epitopes That Promote Functional Antibodies to Multiple Parasite Strains. Journal of Infectious Diseases, 2018, 218, 35-43.	4.0	31
86	Does test-based prescription of evidence-based treatment for malaria improve treatment seeking and satisfaction? Findings of repeated cross-sectional surveys in Papua New Guinea. BMJ Global Health, 2018, 3, e000915.	4.7	2
87	Use of anthropophilic culicid-based xenosurveillance as a proxy for Plasmodium vivax malaria burden and transmission hotspots identification. PLoS Neglected Tropical Diseases, 2018, 12, e0006909.	3.0	9
88	Efficacy of artemether–lumefantrine and dihydroartemisinin–piperaquine for the treatment of uncomplicated malaria in Papua New Guinea. Malaria Journal, 2018, 17, 350.	2.3	15
89	Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens. PLoS Genetics, 2018, 14, e1007279.	3.5	86
90	Assessment of ultra-sensitive malaria diagnosis versus standard molecular diagnostics for malaria elimination: an in-depth molecular community cross-sectional study. Lancet Infectious Diseases, The, 2018, 18, 1108-1116.	9.1	81

#	Article	IF	CITATIONS
91	Antibodies to Intercellular Adhesion Molecule 1-Binding Plasmodium falciparum Erythrocyte Membrane Protein 1-DBLβ Are Biomarkers of Protective Immunity to Malaria in a Cohort of Young Children from Papua New Guinea. Infection and Immunity, 2018, 86, .	2.2	23
92	The impact of the scale-up of malaria rapid diagnostic tests on the routine clinical diagnosis procedures for febrile illness: a series of repeated cross-sectional studies in Papua New Guinea. Malaria Journal, 2018, 17, 202.	2.3	2
93	Plasmodium vivax molecular diagnostics in community surveys: pitfalls and solutions. Malaria Journal, 2018, 17, 55.	2.3	40
94	Human antibodies activate complement against Plasmodium falciparum sporozoites, and are associated with protection against malaria in children. BMC Medicine, 2018, 16, 61.	5.5	79
95	Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. Nature Communications, 2018, 9, 3300.	12.8	59
96	Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nature Communications, 2018, 9, 2223.	12.8	142
97	Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific. PLoS Neglected Tropical Diseases, 2018, 12, e0006146.	3.0	27
98	Taking Sharper Pictures of Malaria with CAMERAs: Combined Antibodies to Measure Exposure Recency Assays. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1120-1127.	1.4	24
99	Joint Modeling of Mixed Plasmodium Species Infections Using a Bivariate Poisson Lognormal Model. American Journal of Tropical Medicine and Hygiene, 2018, 98, 71-76.	1.4	2
100	Mosquito behaviour change after distribution of bednets results in decreased protection against malaria exposure. Journal of Infectious Diseases, 2017, 215, jiw615.	4.0	74
101	Infectivity of symptomatic and asymptomatic Plasmodium vivax infections to a Southeast Asian vector, Anopheles dirus. International Journal for Parasitology, 2017, 47, 163-170.	3.1	76
102	Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum across all Malaria Transmission Zones of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0716.	1.4	45
103	Theoretical Implications of a Pre-Erythrocytic Plasmodium vivax Vaccine for Preventing Relapses. Trends in Parasitology, 2017, 33, 260-263.	3.3	29
104	Optimal Antimalarial Dose Regimens for Sulfadoxine-Pyrimethamine with or without Azithromycin in Pregnancy Based on Population Pharmacokinetic Modeling. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	5
105	The Biology of <i>Plasmodium vivax</i> . Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025585.	6.2	72
106	Malaria Epidemiology at the Clone Level. Trends in Parasitology, 2017, 33, 974-985.	3.3	48
107	Patterns of protective associations differ for antibodies to <i>P. falciparum</i> â€infected erythrocytes and merozoites in immunity against malaria in children. European Journal of Immunology, 2017, 47, 2124-2136.	2.9	21
108	Optimal antimalarial dose regimens for chloroquine in pregnancy based on population pharmacokinetic modelling. International Journal of Antimicrobial Agents, 2017, 50, 542-551.	2,5	14

#	Article	IF	CITATIONS
109	Identifying the risks for human transmission of Plasmodium knowlesi. Lancet Planetary Health, The, 2017, 1, e83-e85.	11.4	3
110	Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γî´T cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Medicine, 2017, 15, 114.	5.5	41
111	Effects of Plasmodium falciparum infection on umbilical artery resistance and intrafetal blood flow distribution: a Doppler ultrasound study from Papua New Guinea. Malaria Journal, 2017, 16, 35.	2.3	15
112	Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malaria Journal, 2017, 16, 178.	2.3	36
113	Imported Plasmodium falciparum and locally transmitted Plasmodium vivax: cross-border malaria transmission scenario in northwestern Thailand. Malaria Journal, 2017, 16, 258.	2.3	41
114	Sustained Malaria Control Over an 8-Year Period in Papua New Guinea: The Challenge of Low-Density Asymptomatic Plasmodium Infections. Journal of Infectious Diseases, 2017, 216, 1434-1443.	4.0	41
115	Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein in Pregnant Women Are Associated with Higher Birth Weight in a Multicenter Study. Frontiers in Immunology, 2017, 8, 163.	4.8	11
116	Chronic Exposure to Malaria Is Associated with Inhibitory and Activation Markers on Atypical Memory B Cells and Marginal Zone-Like B Cells. Frontiers in Immunology, 2017, 8, 966.	4.8	45
117	Development of amplicon deep sequencing markers and data analysis pipeline for genotyping multi-clonal malaria infections. BMC Genomics, 2017, 18, 864.	2.8	86
118	Malaria, malnutrition, and birthweight: A meta-analysis using individual participant data. PLoS Medicine, 2017, 14, e1002373.	8.4	46
119	Effects of liver-stage clearance by Primaquine on gametocyte carriage of Plasmodium vivax and P. falciparum. PLoS Neglected Tropical Diseases, 2017, 11, e0005753.	3.0	19
120	Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand. Parasites and Vectors, 2017, 10, 512.	2.5	51
121	The treatment of non-malarial febrile illness in Papua New Guinea: findings from cross sectional and longitudinal studies of health worker practice. BMC Health Services Research, 2017, 17, 10.	2.2	15
122	IgG antibodies to synthetic GPI are biomarkers of immune-status to both Plasmodium falciparum and Plasmodium vivax malaria in young children. Malaria Journal, 2017, 16, 386.	2.3	15
123	Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malaria Journal, 2017, 16, 427.	2.3	47
124	Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia. ELife, 2017, 6, .	6.0	64
125	Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles. PLoS Neglected Tropical Diseases, 2017, 11, e0005516.	3.0	24
126	Burden and impact of Plasmodium vivax in pregnancy: A multi-centre prospective observational study. PLoS Neglected Tropical Diseases, 2017, 11, e0005606.	3.0	46

#	Article	IF	CITATIONS
127	Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. PLoS Neglected Tropical Diseases, 2017, 11, e0005888.	3.0	52
128	Natural immune response to Plasmodium vivax alpha-helical coiled coil protein motifs and its association with the risk of P. vivax malaria. PLoS ONE, 2017, 12, e0179863.	2.5	3
129	P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission. PLoS ONE, 2017, 12, e0186577.	2.5	17
130	Insecticide-treated nets and malaria prevalence, Papua New Guinea, 2008–2014. Bulletin of the World Health Organization, 2017, 95, 695-705B.	3.3	33
131	Hemoglobin Levels and the Risk of Malaria in Papua New Guinean Infants: A Nested Cohort Study. American Journal of Tropical Medicine and Hygiene, 2017, 97, 1770-1776.	1.4	5
132	The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea. ELife, 2017, 6, .	6.0	32
133	Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. ELife, 2017, 6, .	6.0	64
134	Time trend of malaria in relation to climate variability in Papua New Guinea. Environmental Health and Toxicology, 2016, 31, e2016003.	1.8	16
135	Health Worker Compliance with a â€~Test And Treat' Malaria Case Management Protocol in Papua New Guinea. PLoS ONE, 2016, 11, e0158780.	2.5	15
136	Spatial Effects on the Multiplicity of Plasmodium falciparum Infections. PLoS ONE, 2016, 11, e0164054.	2.5	23
137	Azithromycin ontaining intermittent preventive treatment in pregnancy affects gestational weight gain, an important predictor of birthweight in <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea – an exploratory analysis. Maternal and Child Nutrition, 2016, 12, 699-712.	3.0	15
138	Safety, tolerability and pharmacokinetic properties of coadministered azithromycin and piperaquine in pregnant Papua New Guinean women. British Journal of Clinical Pharmacology, 2016, 82, 199-212.	2.4	18
139	Plasmodium vivax in Oceania. Neglected Tropical Diseases, 2016, , 153-176.	0.4	0
140	Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Scientific Reports, 2016, 6, 39183.	3.3	90
141	The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Scientific Reports, 2016, 6, 33094.	3.3	59
142	Variation in relapse frequency and the transmission potential of <i>Plasmodium vivax</i> malaria. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160048.	2.6	58
143	Maternal Malaria and Malnutrition (M3) initiative, a pooled birth cohort of 13 pregnancy studies in Africa and the Western Pacific. BMJ Open, 2016, 6, e012697.	1.9	7
144	Different Regions of <i>Plasmodium falciparum</i> Erythrocyte-Binding Antigen 175 Induce Antibody Responses to Infection of Varied Efficacy. Journal of Infectious Diseases, 2016, 214, 96-104.	4.0	11

#	Article	IF	CITATIONS
145	A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cellular and Molecular Life Sciences, 2016, 73, 4141-4158.	5.4	20
146	Insights into the naturally acquired immune response to <i>Plasmodium vivax</i> malaria. Parasitology, 2016, 143, 154-170.	1,5	57
147	Merozoite Antigens of Plasmodium falciparum Elicit Strain-Transcending Opsonizing Immunity. Infection and Immunity, 2016, 84, 2175-2184.	2.2	39
148	Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria. Acta Tropica, 2016, 160, 1-8.	2.0	10
149	Mitochondrial DNA from the eradicated European <i>Plasmodium vivax</i> and <i>P. falciparum</i> from 70-year-old slides from the Ebro Delta in Spain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11495-11500.	7.1	41
150	Key Knowledge Gaps for <i>Plasmodium vivax</i> Control and Elimination. American Journal of Tropical Medicine and Hygiene, 2016, 95, 62-71.	1.4	39
151	High Efficacy of Primaquine Treatment for Plasmodium vivax in Western Thailand. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1086-1089.	1.4	13
152	Implications of <i>Plasmodium vivax</i> Biology for Control, Elimination, and Research. American Journal of Tropical Medicine and Hygiene, 2016, 95, 4-14.	1.4	60
153	A novel approach to identifying patterns of human invasion-inhibitory antibodies guides the design of malaria vaccines incorporating polymorphic antigens. BMC Medicine, 2016, 14, 144.	5.5	17
154	Malaria transmission dynamics surrounding the first nationwide long-lasting insecticidal net distribution in Papua New Guinea. Malaria Journal, 2016, 15, 25.	2.3	42
155	Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nature Genetics, 2016, 48, 953-958.	21.4	194
156	Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nature Genetics, 2016, 48, 959-964.	21.4	169
157	Acquisition and Longevity of Antibodies to Plasmodium vivax Preerythrocytic Antigens in Western Thailand. Vaccine Journal, 2016, 23, 117-124.	3.1	42
158	Changes in malaria burden and transmission in sentinel sites after the roll-out of long-lasting insecticidal nets in Papua New Guinea. Parasites and Vectors, 2016, 9, 340.	2.5	37
159	Limited Degradation of the Plasmodium falciparum Gametocyte Marker pfs25 mRNA Exposed to Tropical Temperatures: Considerations for Malaria Transmission Field Studies. American Journal of Tropical Medicine and Hygiene, 2016, 94, 886-889.	1.4	3
160	Structurally conserved erythrocyte-binding domain in <i>Plasmodium</i> provides a versatile scaffold for alternate receptor engagement. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E191-200.	7.1	43
161	The Incidence and Differential Seasonal Patterns of Plasmodium vivax Primary Infections and Relapses in a Cohort of Children in Papua New Guinea. PLoS Neglected Tropical Diseases, 2016, 10, e0004582.	3.0	26
162	An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection. PLoS Neglected Tropical Diseases, 2016, 10, e0004639.	3.0	40

#	Article	IF	CITATIONS
163	Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women. PLoS Neglected Tropical Diseases, 2016, 10, e0005009.	3.0	18
164	Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children. PLoS Neglected Tropical Diseases, 2016, 10, e0005014.	3.0	56
165	Microsatellite Genotyping of Plasmodium vivax Isolates from Pregnant Women in Four Malaria Endemic Countries. PLoS ONE, 2016, 11, e0152447.	2.5	12
166	Prevalence of malaria across Papua New Guinea after initial rollâ€out of insecticideâ€ŧreated mosquito nets. Tropical Medicine and International Health, 2015, 20, 1745-1755.	2.3	39
167	Accuracy of an HRP-2/panLDH rapid diagnostic test to detect peripheral and placental Plasmodium falciparum infection in Papua New Guinean women with anaemia or suspected malaria. Malaria Journal, 2015, 14, 412.	2.3	25
168	Evaluation of CDC light traps for mosquito surveillance in a malaria endemic area on the Thai-Myanmar border. Parasites and Vectors, 2015, 8, 636.	2.5	58
169	Malaria preventive therapy in pregnancy and its potential impact on immunity to malaria in an area of declining transmission. Malaria Journal, 2015, 14, 215.	2.3	9
170	Significant geographical differences in prevalence of mutations associated with Plasmodium falciparum and Plasmodium vivax drug resistance in two regions from Papua New Guinea. Malaria Journal, 2015, 14, 399.	2.3	18
171	Knowledge, Attitudes, and Practices Concerning Malaria in Pregnancy: Results from a Qualitative Study in Madang, Papua New Guinea. PLoS ONE, 2015, 10, e0119077.	2.5	21
172	Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model. PLoS Medicine, 2015, 12, e1001891.	8.4	217
173	Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Neglected Tropical Diseases, 2015, 9, e0003872.	3.0	59
174	Population Pharmacokinetics, Tolerability, and Safety of Dihydroartemisinin-Piperaquine and Sulfadoxine-Pyrimethamine-Piperaquine in Pregnant and Nonpregnant Papua New Guinean Women. Antimicrobial Agents and Chemotherapy, 2015, 59, 4260-4271.	3.2	30
175	Risk factors for malaria and adverse birth outcomes in a prospective cohort of pregnant women resident in a high malaria transmission area of Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 313-324.	1.8	45
176	Pharmacokinetics of Piperaquine Transfer into the Breast Milk of Melanesian Mothers. Antimicrobial Agents and Chemotherapy, 2015, 59, 4272-4278.	3.2	12
177	Gametocyte Clearance Kinetics Determined by Quantitative Magnetic Fractionation in Melanesian Children with Uncomplicated Malaria Treated with Artemisinin Combination Therapy. Antimicrobial Agents and Chemotherapy, 2015, 59, 4489-4496.	3.2	17
178	Antibodies to the <i>Plasmodium falciparum</i> Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria. Journal of Infectious Diseases, 2015, 212, 406-415.	4.0	29
179	Acquisition of Antibodies against Plasmodium falciparum Merozoites and Malaria Immunity in Young Children and the Influence of Age, Force of Infection, and Magnitude of Response. Infection and Immunity, 2015, 83, 646-660.	2.2	121
180	Proinflammatory Responses and Higher IL-10 Production by T Cells Correlate with Protection against Malaria during Pregnancy and Delivery Outcomes. Journal of Immunology, 2015, 194, 3275-3285.	0.8	19

#	Article	IF	CITATIONS
181	Impact of Intermittent Preventive Treatment in Pregnancy with Azithromycin-Containing Regimens on Maternal Nasopharyngeal Carriage and Antibiotic Sensitivity of Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus: a Cross-Sectional Survey at Delivery. Journal of Clinical Microbiology, 2015, 53, 1317-1323.	3.9	9
182	Temporal changes in Plasmodium falciparum anti-malarial drug sensitivity in vitro and resistance-associated genetic mutations in isolates from Papua New Guinea. Malaria Journal, 2015, 14, 37.	2.3	17
183	Acquisition of Functional Antibodies That Block the Binding of Erythrocyte-Binding Antigen 175 and Protection Against <i>Plasmodium falciparum</i> Malaria in Children. Clinical Infectious Diseases, 2015, 61, 1244-1252.	5.8	29
184	Ultra-Sensitive Detection of Plasmodium falciparum by Amplification of Multi-Copy Subtelomeric Targets. PLoS Medicine, 2015, 12, e1001788.	8.4	276
185	Plasmodium vivax Populations Are More Genetically Diverse and Less Structured than Sympatric Plasmodium falciparum Populations. PLoS Neglected Tropical Diseases, 2015, 9, e0003634.	3.0	62
186	High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands. PLoS Neglected Tropical Diseases, 2015, 9, e0003758.	3.0	82
187	Fetal Size in a Rural Melanesian Population with Minimal Risk Factors for Growth Restriction: An Observational Ultrasound Study from Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2015, 92, 178-186.	1.4	4
188	Uncovering the transmission dynamics of <i>Plasmodium vivax</i> using population genetics. Pathogens and Global Health, 2015, 109, 142-152.	2.3	52
189	Sulphadoxine-pyrimethamine plus azithromycin for the prevention of low birthweight in Papua New Guinea: a randomised controlled trial. BMC Medicine, 2015, 13, 9.	5.5	73
190	Factors associated with ultrasound-aided detection of suboptimal fetal growth in a malaria-endemic area in Papua New Guinea. BMC Pregnancy and Childbirth, 2015, 15, 83.	2.4	20
191	Phylogeography of <i>var</i> gene repertoires reveals fineâ€scale geospatial clustering of <i>Plasmodium falciparum</i> populations in a highly endemic area. Molecular Ecology, 2015, 24, 484-497.	3.9	39
192	Development of vaccines for Plasmodium vivax malaria. Vaccine, 2015, 33, 7489-7495.	3.8	86
193	Determining effects of areca (betel) nut chewing in a prospective cohort of pregnant women in Madang Province, Papua New Guinea. BMC Pregnancy and Childbirth, 2015, 15, 177.	2.4	19
194	Differences in affinity of monoclonal and naturally acquired polyclonal antibodies against Plasmodium falciparum merozoite antigens. BMC Microbiology, 2015, 15, 133.	3.3	13
195	Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. American Journal of Tropical Medicine and Hygiene, 2015, 93, 79-86.	1.4	80
196	Malaria Epidemiology and Control Within the International Centers of Excellence for Malaria Research. American Journal of Tropical Medicine and Hygiene, 2015, 93, 5-15.	1.4	34
197	Preterm or Not – An Evaluation of Estimates of Gestational Age in a Cohort of Women from Rural Papua New Guinea. PLoS ONE, 2015, 10, e0124286.	2.5	37
198	Blood-Stage Parasitaemia and Age Determine Plasmodium falciparum and P. vivax Gametocytaemia in Papua New Guinea. PLoS ONE, 2015, 10, e0126747.	2.5	94

#	Article	IF	CITATIONS
199	Missing malaria? Potential obstacles to diagnosis and hypnozoite eradication. Medical Journal of Australia, 2015, 202, 360-360.	1.7	0
200	Peripheral Blood Mononuclear Cells Derived from Grand Multigravidae Display a Distinct Cytokine Profile in Response to P. falciparum Infected Erythrocytes. PLoS ONE, 2014, 9, e86160.	2.5	4
201	Use of Antibiotics within the IMCI Guidelines in Outpatient Settings in Papua New Guinean Children: An Observational and Effectiveness Study. PLoS ONE, 2014, 9, e90990.	2.5	29
202	Factors Affecting Attendance at and Timing of Formal Antenatal Care: Results from a Qualitative Study in Madang, Papua New Guinea. PLoS ONE, 2014, 9, e93025.	2.5	64
203	Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. ELife, 2014, 3, .	6.0	88
204	Limited antigenic diversity of Plasmodium falciparumapical membrane antigen 1 supports the development of effective multi-allele vaccines. BMC Medicine, 2014, 12, 183.	5.5	47
205	Artemisinin-Naphthoquine versus Artemether-Lumefantrine for Uncomplicated Malaria in Papua New Guinean Children: An Open-Label Randomized Trial. PLoS Medicine, 2014, 11, e1001773.	8.4	31
206	Association of antibodies to Plasmodium falciparum reticulocyte binding protein homolog 5 with protection from clinical malaria. Frontiers in Microbiology, 2014, 5, 314.	3.5	41
207	Decreasing Malaria Prevalence and Its Potential Consequences for Immunity in Pregnant Women. Journal of Infectious Diseases, 2014, 210, 1444-1455.	4.0	22
208	Viral pathogens in children hospitalized with features of central nervous system infection in a malaria-endemic region of Papua New Guinea. BMC Infectious Diseases, 2014, 14, 630.	2.9	6
209	Plasmodium falciparum and Plasmodium vivax Genotypes and Efficacy of Intermittent Preventive Treatment in Papua New Guinea. Antimicrobial Agents and Chemotherapy, 2014, 58, 6958-6961.	3.2	7
210	The exit interview as a proxy measure of malaria case management practice: sensitivity and specificity relative to direct observation. BMC Health Services Research, 2014, 14, 628.	2.2	11
211	Pharmacokinetic Properties of Single-Dose Primaquine in Papua New Guinean Children: Feasibility of Abbreviated High-Dose Regimens for Radical Cure of Vivax Malaria. Antimicrobial Agents and Chemotherapy, 2014, 58, 432-439.	3.2	21
212	Predicting Antidisease Immunity Using Proteome Arrays and Sera from Children Naturally Exposed to Malaria. Molecular and Cellular Proteomics, 2014, 13, 2646-2660.	3.8	36
213	Pregnancy and Malaria Exposure Are Associated with Changes in the B Cell Pool and in Plasma Eotaxin Levels. Journal of Immunology, 2014, 193, 2971-2983.	0.8	34
214	Î ³ δT cells and CD14+ Monocytes Are Predominant Cellular Sources of Cytokines and Chemokines Associated With Severe Malaria. Journal of Infectious Diseases, 2014, 210, 295-305.	4.0	65
215	Distinct patterns of diversity, population structure and evolution in the AMA1 genes of sympatric Plasmodium falciparum and Plasmodium vivax populations of Papua New Guinea from an area of similarly high transmission. Malaria Journal, 2014, 13, 233.	2.3	35
216	Progress in mosquito net coverage in Papua New Guinea. Malaria Journal, 2014, 13, 242.	2.3	30

#	Article	IF	CITATIONS
217	Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria. Malaria Journal, 2014, 13, 319.	2.3	15
218	Comparison of an assumed versus measured leucocyte count in parasite density calculations in Papua New Guinean children with uncomplicated malaria. Malaria Journal, 2014, 13, 145.	2.3	26
219	Novel Genotyping Tools for Investigating Transmission Dynamics of Plasmodium falciparum. Journal of Infectious Diseases, 2014, 210, 1188-1197.	4.0	31
220	Malaria case management in Papua New Guinea following the introduction of a revised treatment protocol. Malaria Journal, 2013, 12, 433.	2.3	25
221	Natural Acquisition of Immunity to Plasmodium vivax. Advances in Parasitology, 2013, 81, 77-131.	3.2	84
222	Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1). PLoS Neglected Tropical Diseases, 2013, 7, e2506.	3.0	47
223	Naturally Acquired Immune Responses to P. vivax Merozoite Surface Protein 3α and Merozoite Surface Protein 9 Are Associated with Reduced Risk of P. vivax Malaria in Young Papua New Guinean Children. PLoS Neglected Tropical Diseases, 2013, 7, e2498.	3.0	43
224	A High Force of Plasmodium vivax Blood-Stage Infection Drives the Rapid Acquisition of Immunity in Papua New Guinean Children. PLoS Neglected Tropical Diseases, 2013, 7, e2403.	3.0	53
225	Rosetting in Plasmodium vivax: A Cytoadhesion Phenotype Associated with Anaemia. PLoS Neglected Tropical Diseases, 2013, 7, e2155.	3.0	47
226	Effectiveness of Artemether/Lumefantrine for the Treatment of Uncomplicated Plasmodium vivax and P. falciparum Malaria in Young Children in Papua New Guinea. Clinical Infectious Diseases, 2013, 56, 1413-1420.	5.8	12
227	High Genetic Diversity of Plasmodium vivax on the North Coast of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2013, 89, 188-194.	1.4	23
228	High Levels of Genetic Diversity of Plasmodium falciparum Populations in Papua New Guinea despite Variable Infection Prevalence. American Journal of Tropical Medicine and Hygiene, 2013, 88, 718-725.	1.4	49
229	Identification and Prioritization of Merozoite Antigens as Targets of Protective Human Immunity to <i>Plasmodium falciparum</i> Malaria for Vaccine and Biomarker Development. Journal of Immunology, 2013, 191, 795-809.	0.8	213
230	A Large Plasmodium vivax Reservoir and Little Population Structure in the South Pacific. PLoS ONE, 2013, 8, e66041.	2.5	48
231	Strategies for Detection of Plasmodium species Gametocytes. PLoS ONE, 2013, 8, e76316.	2.5	185
232	Does Malaria Affect Placental Development? Evidence from In Vitro Models. PLoS ONE, 2013, 8, e55269.	2.5	24
233	Opsonising Antibodies to P. falciparum Merozoites Associated with Immunity to Clinical Malaria. PLoS ONE, 2013, 8, e74627.	2.5	82
234	Reduced Risk of Plasmodium vivax Malaria in Papua New Guinean Children with Southeast Asian Ovalocytosis in Two Cohorts and a Case-Control Study. PLoS Medicine, 2012, 9, e1001305.	8.4	53

#	Article	IF	CITATIONS
235	Intermittent Preventive Treatment for Malaria in Papua New Guinean Infants Exposed to Plasmodium falciparum and P. vivax: A Randomized Controlled Trial. PLoS Medicine, 2012, 9, e1001195.	8.4	38
236	Severe Anemia in Papua New Guinean Children from a Malaria-Endemic Area: A Case-Control Etiologic Study. PLoS Neglected Tropical Diseases, 2012, 6, e1972.	3.0	40
237	A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010. PLoS Neglected Tropical Diseases, 2012, 6, e1814.	3.0	448
238	Force of infection is key to understanding the epidemiology of <i>Plasmodium falciparum</i> malaria in Papua New Guinean children. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10030-10035.	7.1	106
239	Tolerability and Safety of Primaquine in Papua New Guinean Children 1 to 10 Years of Age. Antimicrobial Agents and Chemotherapy, 2012, 56, 2146-2149.	3.2	18
240	Predictors of Acute Bacterial Meningitis in Children from a Malaria-Endemic Area of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2012, 86, 240-245.	1.4	9
241	Multiplex Assay for Species Identification and Monitoring of Insecticide Resistance in Anopheles punctulatus Group Populations of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2012, 86, 140-151.	1.4	15
242	Placental Infection With Plasmodium vivax: A Histopathological and Molecular Study. Journal of Infectious Diseases, 2012, 206, 1904-1910.	4.0	43
243	Artemisinin-Naphthoquine Combination Therapy for Uncomplicated Pediatric Malaria: a Tolerability, Safety, and Preliminary Efficacy Study. Antimicrobial Agents and Chemotherapy, 2012, 56, 2465-2471.	3.2	33
244	Artemisinin-Naphthoquine Combination Therapy for Uncomplicated Pediatric Malaria: a Pharmacokinetic Study. Antimicrobial Agents and Chemotherapy, 2012, 56, 2472-2484.	3.2	36
245	Rapid Diagnostic Test–Based Management of Malaria: An Effectiveness Study in Papua New Guinean Infants With Plasmodium falciparum and Plasmodium vivax Malaria. Clinical Infectious Diseases, 2012, 54, 644-651.	5.8	31
246	Relapses Contribute Significantly to the Risk of Plasmodium vivax Infection and Disease in Papua New Guinean Children 1–5 Years of Age. Journal of Infectious Diseases, 2012, 206, 1771-1780.	4.0	108
247	Pharmacokinetic Comparison of Two Piperaquine-Containing Artemisinin Combination Therapies in Papua New Guinean Children with Uncomplicated Malaria. Antimicrobial Agents and Chemotherapy, 2012, 56, 3288-3297.	3.2	24
248	Epidemiology of malaria in the Papua New Guinean highlands. Tropical Medicine and International Health, 2012, 17, 1181-1191.	2.3	21
249	Lack of associations of α+-thalassemia with the risk of Plasmodium falciparum and Plasmodium vivax infection and disease in a cohort of children aged 3–21 months from Papua New Guinea. International Journal for Parasitology, 2012, 42, 1107-1113.	3.1	11
250	Indifferent to disease: A qualitative investigation of the reasons why some Papua New Guineans who own mosquito nets choose not to use them. Social Science and Medicine, 2012, 75, 2283-2290.	3.8	19
251	The economic cost to households of childhood malaria in Papua New Guinea: a focus on intra-country variation. Health Policy and Planning, 2012, 27, 339-347.	2.7	14
252	Research challenges and gaps in malaria knowledge in Papua New Guinea. Acta Tropica, 2012, 121, 274-280.	2.0	17

#	Article	IF	CITATIONS
253	Ownership and usage of mosquito nets after four years of large-scale free distribution in Papua New Guinea. Malaria Journal, 2012, 11, 192.	2.3	74
254	Malaria case management in Papua New Guinea prior to the introduction of a revised treatment protocol. Malaria Journal, 2012, 11, 157.	2.3	12
255	A histopathologic study of fatal paediatric cerebral malaria caused by mixed Plasmodium falciparum/Plasmodium vivax infections. Malaria Journal, 2012, 11, 107.	2.3	19
256	Estimating the Numbers of Malaria Infections in Blood Samples Using High-Resolution Genotyping Data. PLoS ONE, 2012, 7, e42496.	2.5	19
257	The Plasmodium falciparum Erythrocyte Invasion Ligand Pfrh4 as a Target of Functional and Protective Human Antibodies against Malaria. PLoS ONE, 2012, 7, e45253.	2.5	51
258	Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature, 2012, 487, 375-379.	27.8	450
259	Rapid Antigen Detection Tests for Malaria Diagnosis in Severely Ill Papua New Guinean Children: A Comparative Study Using Bayesian Latent Class Models. PLoS ONE, 2012, 7, e48701.	2.5	20
260	Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria. PLoS ONE, 2012, 7, e51023.	2.5	65
261	Quantifying the Importance of MSP1-19 as a Target of Growth-Inhibitory and Protective Antibodies against Plasmodium falciparum in Humans. PLoS ONE, 2011, 6, e27705.	2.5	49
262	Features and Prognosis of Severe Malaria Caused by Plasmodium falciparum, Plasmodium vivax and Mixed Plasmodium Species in Papua New Guinean Children. PLoS ONE, 2011, 6, e29203.	2.5	74
263	Population genetic analysis of the Plasmodium falciparum 6-cys protein Pf38 in Papua New Guinea reveals domain-specific balancing selection. Malaria Journal, 2011, 10, 126.	2.3	18
264	A new high-throughput method for simultaneous detection of drug resistance associated mutations in Plasmodium vivax dhfr, dhps and mdr1 genes. Malaria Journal, 2011, 10, 282.	2.3	23
265	Reported reasons for not using a mosquito net when one is available: a review of the published literature. Malaria Journal, 2011, 10, 83.	2.3	187
266	Multiplicity and Diversity of Plasmodium vivax Infections in a Highly Endemic Region in Papua New Guinea. PLoS Neglected Tropical Diseases, 2011, 5, e1424.	3.0	73
267	Molecular Assessment of <i>Plasmodium falciparum</i> Resistance to Antimalarial Drugs in Papua New Guinea Using an Extended Ligase Detection Reaction Fluorescent Microsphere Assay. Antimicrobial Agents and Chemotherapy, 2011, 55, 798-805.	3.2	21
268	Pharmacokinetic Properties of Conventional and Double-Dose Sulfadoxine-Pyrimethamine Given as Intermittent Preventive Treatment in Infancy. Antimicrobial Agents and Chemotherapy, 2011, 55, 1693-1700.	3.2	14
269	Meningeal Inflammation Increases Artemether Concentrations in Cerebrospinal Fluid in Papua New Guinean Children Treated with Intramuscular Artemether. Antimicrobial Agents and Chemotherapy, 2011, 55, 5027-5033.	3.2	13
270	High Throughput Multiplex Assay for Species Identification of Papua New Guinea Malaria Vectors: Members of the Anopheles punctulatus (Diptera: Culicidae) Species Group. American Journal of Tropical Medicine and Hygiene, 2011, 84, 166-173.	1.4	16

IVO MUELLER

#	Article	IF	CITATIONS
271	Population Pharmacokinetics of Artemether, Lumefantrine, and Their Respective Metabolites in Papua New Guinean Children with Uncomplicated Malaria. Antimicrobial Agents and Chemotherapy, 2011, 55, 5306-5313.	3.2	50
272	Increasing Chloramphenicol Resistance in Streptococcus pneumoniae Isolates from Papua New Guinean Children with Acute Bacterial Meningitis. Antimicrobial Agents and Chemotherapy, 2011, 55, 4454-4456.	3.2	11
273	Characterization of Treatment Failure in Efficacy Trials of Drugs against Plasmodium vivax by Genotyping Neutral and Drug Resistance-Associated Markers. Antimicrobial Agents and Chemotherapy, 2011, 55, 4479-4481.	3.2	18
274	Placental Malaria-Associated Inflammation Disturbs the Insulin-like Growth Factor Axis of Fetal Growth Regulation. Journal of Infectious Diseases, 2011, 203, 561-569.	4.0	75
275	Intermittent Preventive Treatment to Reduce the Burden of Malaria in Children: New Evidence on Integration and Delivery. PLoS Medicine, 2011, 8, e1000410.	8.4	5
276	Estimating the Burden of Malaria: The Need for Improved Surveillance. PLoS Medicine, 2011, 8, e1001144.	8.4	21
277	Cost–effectiveness of artemisinin combination therapy for uncomplicated malaria in children: data from Papua New Guinea. Bulletin of the World Health Organization, 2011, 89, 211-220.	3.3	18
278	Desbutyl-Lumefantrine Is a Metabolite of Lumefantrine with Potent <i>In Vitro</i> Antimalarial Activity That May Influence Artemether-Lumefantrine Treatment Outcome. Antimicrobial Agents and Chemotherapy, 2011, 55, 1194-1198.	3.2	53
279	Subacute Sclerosing Panencephalitis in Papua New Guinean Children: The Cost of Continuing Inadequate Measles Vaccine Coverage. PLoS Neglected Tropical Diseases, 2011, 5, e932.	3.0	28
280	Reference Intervals for Common Laboratory Tests in Melanesian Children. American Journal of Tropical Medicine and Hygiene, 2011, 85, 50-54.	1.4	18
281	Plasma Plasmodium falciparum Histidine-Rich Protein-2 Concentrations Do Not Reflect Severity of Malaria in Papua New Guinean Children. Clinical Infectious Diseases, 2011, 52, 440-446.	5.8	30
282	How Much Remains Undetected? Probability of Molecular Detection of Human Plasmodia in the Field. PLoS ONE, 2011, 6, e19010.	2.5	53
283	Population Genetic Analysis of Plasmodium falciparum Parasites Using a Customized Illumina GoldenGate Genotyping Assay. PLoS ONE, 2011, 6, e20251.	2.5	63
284	The epidemiology of malaria in the Papua New Guinea highlands: 7. Southern Highlands Province. Papua and New Guinea Medical Journal, 2011, 54, 35-47.	1.0	2
285	Vivax malaria: more severe and more resistant. Therapy: Open Access in Clinical Medicine, 2010, 7, 39-48.	0.2	3
286	Investigation of reproductive toxicity of piperaquine in mice. Reproductive Toxicology, 2010, 29, 206-213.	2.9	11
287	Robert Koch redux: malaria immunology in Papua New Guinea. Parasite Immunology, 2010, 32, 623-632.	1.5	11
288	<i>In vitro</i> sensitivity of <i>Plasmodium falciparum</i> to conventional and novel antimalarial drugs in Papua New Guinea. Tropical Medicine and International Health, 2010, 15, 342-349.	2.3	22

#	Article	IF	CITATIONS
289	Population Hemoglobin Mean and Anemia Prevalence in Papua New Guinea: New Metrics for Defining Malaria Endemicity?. PLoS ONE, 2010, 5, e9375.	2.5	18
290	Pharmacokinetics of Chloroquine and Monodesethylchloroquine in Pregnancy. Antimicrobial Agents and Chemotherapy, 2010, 54, 1186-1192.	3.2	66
291	Minimal Association of Common Red Blood Cell Polymorphisms with Plasmodium falciparum Infection and Uncomplicated Malaria in Papua New Guinean School Children. American Journal of Tropical Medicine and Hygiene, 2010, 83, 828-833.	1.4	24
292	Lumbar Puncture in Children from an Area of Malaria Endemicity Who Present with a Febrile Seizure. Clinical Infectious Diseases, 2010, 51, 534-540.	5.8	22
293	Pyrethroid Susceptibility in Natural Populations of the Anopheles punctulatus Group (Diptera:) Tj ETQq1 1 0.7843	814 rgBT / 1.4	Overlock 10
294	Evidence That the Erythrocyte Invasion Ligand PfRh2 is a Target of Protective Immunity against <i>Plasmodium falciparum</i> Malaria. Journal of Immunology, 2010, 185, 6157-6167.	0.8	84
295	Treatment with Coartem (Artemether-Lumefantrine) in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2010, 82, 529-534.	1.4	17
296	Association between Naturally Acquired Antibodies to Erythrocyteâ€Binding Antigens of <i>Plasmodium falciparum</i> and Protection from Malaria and Highâ€Density Parasitemia. Clinical Infectious Diseases, 2010, 51, e50-e60.	5.8	184
297	Evaluation of the Antigenic Diversity of Placenta-Binding <i>Plasmodium falciparum</i> Variants and the Antibody Repertoire among Pregnant Women. Infection and Immunity, 2010, 78, 1963-1978.	2.2	51
298	Pharmacokinetic Properties of Azithromycin in Pregnancy. Antimicrobial Agents and Chemotherapy, 2010, 54, 360-366.	3.2	43
299	Chloroquine and Its Derivatives Exacerbate B19V-Associated Anemia by Promoting Viral Replication. PLoS Neglected Tropical Diseases, 2010, 4, e669.	3.0	22
300	Vaccines against malaria: Perspectives from Papua, New Guinea. Hum Vaccin, 2010, 6, 17-20.	2.4	8
301	Prevention and treatment of malaria in pregnancy. Future Microbiology, 2010, 5, 1599-1613.	2.0	16
302	Community response to intermittent preventive treatment of malaria in infants (IPTi) in Papua New Guinea. Malaria Journal, 2010, 9, 369.	2.3	10
303	Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malaria Journal, 2010, 9, 361.	2.3	126
304	Multilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission. Malaria Journal, 2010, 9, 336.	2.3	79
305	Seeking treatment for symptomatic malaria in Papua New Guinea. Malaria Journal, 2010, 9, 268.	2.3	17
306	Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay. Malaria Journal, 2010, 9, 29.	2.3	61

#	Article	IF	CITATIONS
307	Differential Patterns of Infection and Disease with P. falciparum and P. vivax in Young Papua New Guinean Children. PLoS ONE, 2010, 5, e9047.	2.5	124
308	CYP2D6 and CYP2C19 in Papua New Guinea: High frequency of previously uncharacterized CYP2D6 alleles and heterozygote excess. International Journal of Molecular Epidemiology and Genetics, 2010, 1, 310-9.	0.4	10
309	Pharmacokinetic Properties of Sulfadoxine-Pyrimethamine in Pregnant Women. Antimicrobial Agents and Chemotherapy, 2009, 53, 4368-4376.	3.2	53
310	Mechanisms Underlying Early Interferonâ€Î³ Production in HumanPlasmodium falciparumMalaria. Clinical Infectious Diseases, 2009, 48, 1482-1483.	5.8	5
311	Evaluation of <i>Plasmodium vivax</i> Genotyping Markers for Molecular Monitoring in Clinical Trials. Journal of Infectious Diseases, 2009, 199, 1074-1080.	4.0	97
312	Cellular Tumor Necrosis Factor, Gamma Interferon, and Interleukin-6 Responses as Correlates of Immunity and Risk of Clinical <i>Plasmodium falciparum</i> Malaria in Children from Papua New Guinea. Infection and Immunity, 2009, 77, 3033-3043.	2.2	84
313	Strain-Specific Duffy Binding Protein Antibodies Correlate with Protection against Infection with Homologous Compared to Heterologous <i>Plasmodium vivax</i> Strains in Papua New Guinean Children. Infection and Immunity, 2009, 77, 4009-4017.	2.2	84
314	Immunoglobulin G Subclass-Specific Responses against <i>Plasmodium falciparum</i> Merozoite Antigens Are Associated with Control of Parasitemia and Protection from Symptomatic Illness. Infection and Immunity, 2009, 77, 1165-1174.	2.2	235
315	Genome-wide and fine-resolution association analysis of malaria in West Africa. Nature Genetics, 2009, 41, 657-665.	21.4	345
316	Guidance on the evaluation of Plasmodium vivax vaccines in populations exposed to natural infection. Vaccine, 2009, 27, 5633-5643.	3.8	12
317	Comparison of Plasmodium falciparum allelic frequency distribution in different endemic settings by high-resolution genotyping. Malaria Journal, 2009, 8, 250.	2.3	73
318	Three different Plasmodium species show similar patterns of clinical tolerance of malaria infection. Malaria Journal, 2009, 8, 158.	2.3	29
319	Malaria – a major health problem within an oil palm plantation around Popondetta, Papua New Guinea. Malaria Journal, 2009, 8, 56.	2.3	15
320	High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea. Malaria Journal, 2009, 8, 41.	2.3	82
321	Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infectious Diseases, The, 2009, 9, 555-566.	9.1	565
322	Toxicology and pharmacokinetics of piperaquine in mice. Toxicology, 2008, 249, 55-61.	4.2	9
323	Transfer of chloroquine and desethylchloroquine across the placenta and into milk in Melanesian mothers. British Journal of Clinical Pharmacology, 2008, 65, 674-679.	2.4	43
324	Heterogeneous distribution of Plasmodium falciparum drug resistance haplotypes in subsets of the host population. Malaria Journal, 2008, 7, 78.	2.3	9

#	Article	IF	CITATIONS
325	Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission. Malaria Journal, 2008, 7, 66.	2.3	48
326	A Trial of Combination Antimalarial Therapies in Children from Papua New Guinea. New England Journal of Medicine, 2008, 359, 2545-2557.	27.0	174
327	Association of Early Interferonâ€Î³ Production with Immunity to Clinical Malaria: A Longitudinal Study among Papua New Guinean Children. Clinical Infectious Diseases, 2008, 47, 1380-1387.	5.8	148
328	Pharmacokinetics and Efficacy of Piperaquine and Chloroquine in Melanesian Children with Uncomplicated Malaria. Antimicrobial Agents and Chemotherapy, 2008, 52, 237-243.	3.2	80
329	Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage <i>Plasmodium vivax</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8363-8368.	7.1	147
330	A review of the current state of malaria among pregnant women in Papua New Guinea. Papua and New Guinea Medical Journal, 2008, 51, 12-6.	1.0	15
331	The Sensitivity of the OptiMAL Rapid Diagnostic Test to the Presence of Plasmodium falciparum Gametocytes Compromises Its Ability To Monitor Treatment Outcomes in an Area of Papua New Guinea in which Malaria Is Endemic. Journal of Clinical Microbiology, 2007, 45, 627-630.	3.9	32
332	Rectal Administration of Artemisinin Derivatives for the Treatment of Malaria. JAMA - Journal of the American Medical Association, 2007, 297, 2381.	7.4	45
333	A Multiplex Ligase Detection Reaction-Fluorescent Microsphere Assay for Simultaneous Detection of Single Nucleotide Polymorphisms Associated with Plasmodium falciparum Drug Resistance. Journal of Clinical Microbiology, 2007, 45, 752-761.	3.9	35
334	Microsatellite polymorphism within pfcrt provides evidence of continuing evolution of chloroquine-resistant alleles in Papua New Guinea. Malaria Journal, 2007, 6, 34.	2.3	19
335	Reduced Plasmodium vivax Erythrocyte Infection in PNG Duffy-Negative Heterozygotes. PLoS ONE, 2007, 2, e336.	2.5	65
336	Plasmodium malariae and Plasmodium ovale – the â€~bashful' malaria parasites. Trends in Parasitology, 2007, 23, 278-283.	3.3	235
337	THE RISK OF MALARIAL INFECTIONS AND DISEASE IN PAPUA NEW GUINEAN CHILDREN. American Journal of Tropical Medicine and Hygiene, 2007, 76, 997-1008.	1.4	149
338	Seroprevalence of Antibodies to Parvovirus B19 among Children in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2007, 77, 354-357.	1.4	9
339	Low Efficacy of Amodiaquine or Chloroquine Plus Sulfadoxine-Pyrimethamine against Plasmodium falciparum and P. vivax Malaria in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2007, 77, 947-954.	1.4	49
340	Dynamics of Asymptomatic Plasmodium vivax Infections and Duffy Binding Protein Polymorphisms in Relation to Parasitemia Levels in Papua New Guinean Children. American Journal of Tropical Medicine and Hygiene, 2007, 77, 955-962.	1.4	12
341	The risk of malarial infections and disease in Papua New Guinean children. American Journal of Tropical Medicine and Hygiene, 2007, 76, 997-1008.	1.4	106
342	Seroprevalence of antibodies to parvovirus B19 among children in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2007, 77, 354-7.	1.4	4

#	Article	IF	CITATIONS
343	Low efficacy of amodiaquine or chloroquine plus sulfadoxine-pyrimethamine against Plasmodium falciparum and P. vivax malaria in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2007, 77, 947-54.	1.4	33
344	Dynamics of asymptomatic Plasmodium vivax infections and Duffy binding protein polymorphisms in relation to parasitemia levels in Papua New Guinean children. American Journal of Tropical Medicine and Hygiene, 2007, 77, 955-62.	1.4	10
345	The epidemiology of malaria in the Papua New Guinea highlands: 5. Aseki, Menyamya and Wau-Bulolo, Morobe Province. Papua and New Guinea Medical Journal, 2007, 50, 111-22.	1.0	4
346	The epidemiology of malaria in the Papua New Guinea highlands: 6. Simbai and Bundi, Madang Province. Papua and New Guinea Medical Journal, 2007, 50, 123-33.	1.0	2
347	Parvovirus B19 Infection Contributes to Severe Anemia in Young Children in Papua New Guinea. Journal of Infectious Diseases, 2006, 194, 146-153.	4.0	51
348	Clinical Immunity to Malaria. Current Molecular Medicine, 2006, 6, 205-221.	1.3	100
349	Rifampicin/Cotrimoxazole/Isoniazid Versus Mefloquine or Quinine + Sulfadoxine- Pyrimethamine for Malaria: A Randomized Trial. PLOS Clinical Trials, 2006, 1, e38.	3.5	10
350	CHANGING PATTERNS OF PLASMODIUM BLOOD-STAGE INFECTIONS IN THE WOSERA REGION OF PAPUA NEW GUINEA MONITORED BY LIGHT MICROSCOPY AND HIGH THROUGHPUT PCR DIAGNOSIS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 588-596.	1.4	74
351	Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. American Journal of Tropical Medicine and Hygiene, 2006, 75, 588-96.	1.4	58
352	The epidemiology of malaria in the Papua New Guinea highlands: 4. Enga Province. Papua and New Guinea Medical Journal, 2006, 49, 115-25.	1.0	4
353	Effectiveness of dengue control practices in household water containers in Northeast Thailand. Tropical Medicine and International Health, 2005, 10, 755-763.	2.3	52
354	EPIDEMIC MALARIA IN THE HIGHLANDS OF PAPUA NEW GUINEA. American Journal of Tropical Medicine and Hygiene, 2005, 72, 554-560.	1.4	35
355	Epidemic malaria in the highlands of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2005, 72, 554-60.	1.4	15
356	Malaria control in Papua New Guinea results in complex epidemiological changes. Papua and New Guinea Medical Journal, 2005, 48, 151-7.	1.0	10
357	MOLECULAR ANALYSIS OF PLASMODIUM FALCIPARUM FROM DRUG TREATMENT FAILURE PATIENTS IN PAPUA NEW GUINEA. American Journal of Tropical Medicine and Hygiene, 2004, 70, 251-255.	1.4	22
358	Molecular analysis of Plasmodium falciparum from drug treatment failure patients in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 2004, 70, 251-5.	1.4	13
359	The epidemiology of malaria in the Papua New Guinea highlands: 3. Simbu Province. Papua and New Guinea Medical Journal, 2004, 47, 159-73.	1.0	7
360	Geographical Structure of Diversity and Differences between Symptomatic and Asymptomatic Infections for Plasmodium falciparum Vaccine Candidate AMA1. Infection and Immunity, 2003, 71, 1416-1426.	2.2	118

#	Article	IF	CITATIONS
361	The epidemiology of malaria in the Papua New Guinea highlands: 1. Western Highlands Province. Papua and New Guinea Medical Journal, 2003, 46, 16-31.	1.0	3
362	The epidemiology of malaria in the Papua New Guinea highlands: 2. Eastern Highlands Province. Papua and New Guinea Medical Journal, 2003, 46, 166-79.	1.0	7
363	Adoption and Hospital Admission in Port Moresby, Papua New Guinea. Journal of Tropical Pediatrics, 2002, 48, 264-269.	1.5	3
364	Rise in Malaria Incidence Rates in South Africa: A Small-Area Spatial Analysis of Variation in Time Trends. American Journal of Epidemiology, 2002, 155, 257-264.	3.4	69
365	Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever American Journal of Tropical Medicine and Hygiene, 2002, 66, 481-486.	1.4	83
366	The population structure of Plasmodium falciparum and Plasmodium vivax during an epidemic of malaria in the Eastern Highlands of Papua New Guinea American Journal of Tropical Medicine and Hygiene, 2002, 67, 459-464.	1.4	51
367	Complex patterns of malaria epidemiology in the highlands region of Papua New Guinea. Papua and New Guinea Medical Journal, 2002, 45, 200-5.	1.0	6
368	Protective Immunity Against Severe Malaria is Associated with a Repertoire of Antibodies to Conserved PfEMP1 Variants. SSRN Electronic Journal, 0, , .	0.4	0
369	An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples. Wellcome Open Research, 0, 7, 136.	1.8	16
370	Prevalence and force of Plasmodium vivax blood-stage infection and associated clinical malaria burden in the Brazilian Amazon. Memorias Do Instituto Oswaldo Cruz, 0, 117, .	1.6	3