
Ricardo Oyarzua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7437552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A three-field Banach spaces-based mixed formulation for the unsteady Brinkman–Forchheimer equations. Computer Methods in Applied Mechanics and Engineering, 2022, 394, 114895.	6.6	10
2	Analysis of an unfitted mixed finite element method for a class of quasi-Newtonian Stokes flow. Computers and Mathematics With Applications, 2022, 114, 225-243.	2.7	1
3	A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier–Stokes problem. Applied Numerical Mathematics, 2022, 176, 134-158.	2.1	5
4	Mixed Kirchhoff stress–displacement–pressure formulations for incompressible hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113562.	6.6	9
5	Error analysis of a conforming and locking-free four-field formulation for the stationary Biot's model. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, S475-S506.	1.9	3
6	Banach spaces-based analysis of a fully-mixed finite element method for the steady-state model of fluidized beds. Computers and Mathematics With Applications, 2021, 84, 244-276.	2.7	13
7	Residual-based <i>a posteriori</i> error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 659-687.	1.9	6
8	Analysis of a momentum conservative <scp>mixedâ€FEM</scp> for the stationary <scp>Navier–Stokes</scp> problem. Numerical Methods for Partial Differential Equations, 2021, 37, 2895-2923.	3.6	18
9	A priori and a posteriori error analyses of a high order unfitted mixed-FEM for Stokes flow. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112780.	6.6	7
10	A five-field augmented fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem. Computers and Mathematics With Applications, 2020, 80, 1944-1963.	2.7	4
11	A Divergence-Conforming DG-Mixed Finite Element Method for the Stationary Boussinesq Problem. Journal of Scientific Computing, 2020, 85, 1.	2.3	4
12	A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 1689-1723.	1.9	13
13	A Fully-Mixed Formulation for the Steady Double-Diffusive Convection System Based upon Brinkman–Forchheimer Equations. Journal of Scientific Computing, 2020, 85, 1.	2.3	13
14	A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo, 2020, 57, 1.	1,1	12
15	Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 273-299.	1.9	25
16	A new mixed finite element method for the <i>n</i> -dimensional Boussinesq problem with temperature-dependent viscosity. Networks and Heterogeneous Media, 2020, 15, 215-245.	1,1	8
17	A Posteriori Error Analysis of a Mixed-Primal Finite Element Method for the Boussinesq Problem with Temperature-Dependent Viscosity. Journal of Scientific Computing, 2019, 78, 887-917.	2.3	10
18	A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model. Computers and Mathematics With Applications, 2019, 77, 693-714	2.7	11

RICARDO OYARZUA

#	Article	IF	CITATIONS
19	A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd–Stokes problem. Numerical Methods for Partial Differential Equations, 2019, 35, 295-324.	3.6	6
20	A High Order Mixed-FEM for Diffusion Problems on Curved Domains. Journal of Scientific Computing, 2019, 79, 49-78.	2.3	10
21	A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier–Stokes–Brinkman problem. Computers and Mathematics With Applications, 2018, 75, 2420-2444.	2.7	8
22	Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 1947-1980.	1.9	7
23	A mixed–primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo, 2018, 55, 1.	1.1	16
24	Error analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions. IMA Journal of Numerical Analysis, 2018, 38, 1452-1484.	2.9	13
25	A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numerische Mathematik, 2017, 135, 571-606.	1.9	22
26	An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo, 2017, 54, 167-205.	1.1	27
27	A posteriori error analysis of a fully-mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. Computer Methods in Applied Mechanics and Engineering, 2017, 315, 943-971.	6.6	15
28	A posteriori error analysis of an augmented mixed-primal formulation for the stationary Boussinesq model. Calcolo, 2017, 54, 1055-1095.	1.1	12
29	Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. Journal of Computational and Applied Mathematics, 2017, 323, 71-94.	2.0	25
30	An augmented stressâ€based mixed finite element method for the steady state Navierâ€Stokes equations with nonlinear viscosity. Numerical Methods for Partial Differential Equations, 2017, 33, 1692-1725.	3.6	15
31	A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. Journal of Numerical Mathematics, 2017, 25, .	3.5	20
32	Analysis of an augmented mixedâ€primal formulation for the stationary <scp>B</scp> oussinesq problem. Numerical Methods for Partial Differential Equations, 2016, 32, 445-478.	3.6	49
33	Analysis of an augmented mixed-FEM for the Navier-Stokes problem. Mathematics of Computation, 2016, 86, 589-615.	2.1	21
34	An Augmented Mixed Finite Element Method for the Navier–Stokes Equations with Variable Viscosity. SIAM Journal on Numerical Analysis, 2016, 54, 1069-1092.	2.3	24
35	Locking-Free Finite Element Methods for Poroelasticity. SIAM Journal on Numerical Analysis, 2016, 54, 2951-2973.	2.3	72
36	A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numerische Mathematik, 2016, 133, 781-817.	1.9	27

RICARDO OYARZUA

#	Article	IF	CITATIONS
37	Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. Comptes Rendus Mathematique, 2016, 354, 57-62.	0.3	17
38	<i>A priori</i> and <i>a posteriori</i> error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density. IMA Journal of Numerical Analysis, 2016, 36, 947-983.	2.9	11
39	New fully-mixed finite element methods for the Stokes–Darcy coupling. Computer Methods in Applied Mechanics and Engineering, 2015, 295, 362-395.	6.6	48
40	An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA Journal of Numerical Analysis, 2014, 34, 1104-1135.	2.9	41
41	Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Computer Methods in Applied Mechanics and Engineering, 2014, 270, 76-112.	6.6	20
42	A priorierror analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2013, 47, 471-506.	1.9	7
43	A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA Journal of Numerical Analysis, 2012, 32, 845-887.	2.9	21
44	Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Mathematics of Computation, 2011, 80, 1911-1948.	2.1	75
45	A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 1877-1891.	6.6	59
46	Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem. Numerical Methods for Partial Differential Equations, 2011, 27, 721-748.	3.6	35
47	A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA Journal of Numerical Analysis, 2008, 29, 86-108.	2.9	105
48	Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electronic Transactions on Numerical Analysis, 0, 48, 114-130.	0.0	23