
Silvia Campello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7437442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDâ€lâ€induced T cell exhaustion is controlled by a Drp1â€dependent mechanism. Molecular Oncology, 2022, 16, 188-205.	4.6	15
2	PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene, 2022, 41, 1986-2002.	5.9	5
3	Migrasomes, new vescicles as Hansel and Gretel white pebbles?. Biology Direct, 2022, 17, 8.	4.6	19
4	Following the Dynamism of the Mitochondrial Network in T Cells. Methods in Molecular Biology, 2021, 2310, 287-299.	0.9	1
5	AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature, 2021, 592, 799-803.	27.8	78
6	Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathologica, 2021, 142, 537-564.	7.7	21
7	The long non-coding RNA CDK6-AS1 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics. IScience, 2021, 24, 103350.	4.1	6
8	Thioridazine requires calcium influx to induce MLL-AF6–rearranged AML cell death. Blood Advances, 2020, 4, 4417-4429.	5.2	8
9	Recirculation and Residency of T Cells and Tregs: Lessons Learnt in Anacapri. Frontiers in Immunology, 2020, 11, 682.	4.8	3
10	JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death and Differentiation, 2020, 27, 2749-2767.	11.2	16
11	Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacological Research, 2019, 146, 104317.	7.1	35
12	Reversible induction of mitophagy by an optogenetic bimodular system. Nature Communications, 2019, 10, 1533.	12.8	27
13	The Long Noncoding RNA BALR2 Controls Novel Transcriptional Circuits Involved in Chemotherapy Sensitivity of Pediatric Acute Myeloid Leukemia (AML) Blasts. Blood, 2019, 134, 2734-2734.	1.4	0
14	Epigenetic heterogeneity affects the risk of relapse in children with t(8;21)RUNX1-RUNX1T1-rearranged AML. Leukemia, 2018, 32, 1124-1134.	7.2	17
15	<i>S</i> -nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3388-E3397.	7.1	128
16	Mitophagy in neurodegenerative diseases. Neurochemistry International, 2018, 117, 156-166.	3.8	79
17	Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Reports, 2018, 25, 3059-3073.e10.	6.4	82
18	AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis. Developmental Cell, 2018, 47, 592-607.e6.	7.0	34

SILVIA CAMPELLO

#	Article	IF	CITATIONS
19	Monitoring the Mitochondrial Dynamics in Mammalian Cells. Methods in Molecular Biology, 2018, 1782, 267-285.	0.9	15
20	AMBRA1-Mediated Mitophagy Counteracts Oxidative Stress and Apoptosis Induced by Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. Frontiers in Cellular Neuroscience, 2018, 12, 92.	3.7	57
21	T lymphocytes against solid malignancies: winning ways to defeat tumours. Cell Stress, 2018, 2, 200-212.	3.2	22
22	The mitochondrial dynamics in cancer and immune-surveillance. Seminars in Cancer Biology, 2017, 47, 29-42.	9.6	77
23	The Close Interconnection between Mitochondrial Dynamics and Mitophagy in Cancer. Frontiers in Oncology, 2017, 7, 81.	2.8	50
24	Fine-tuning of ULK1 mRNA and protein levels is required for autophagy oscillation. Journal of Cell Biology, 2016, 215, 841-856.	5.2	116
25	Macroautophagy inhibition maintains fragmented mitochondria to foster T cell receptorâ€dependent apoptosis. EMBO Journal, 2016, 35, 1793-1809.	7.8	27
26	Fanconi Anemia Genes, of Menders and Sweepers. Developmental Cell, 2016, 37, 299-300.	7.0	0
27	Autophagy inhibition and mitochondrial remodeling join forces to amplify apoptosis in activation-induced cell death. Autophagy, 2016, 12, 2496-2497.	9.1	8
28	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
29	Changing perspective on oncometabolites: from metabolic signature of cancer to tumorigenic and immunosuppressive agents. Oncotarget, 2016, 7, 46692-46706.	1.8	25
30	Following Mitochondria Dynamism: Confocal Analysis of the Organelle Morphology. Methods in Molecular Biology, 2015, 1241, 153-161.	0.9	4
31	Mitochondrial Dynamics Protein Drp1 Is Overexpressed in Oncocytic Thyroid Tumors and Regulates Cancer Cell Migration. PLoS ONE, 2015, 10, e0122308.	2.5	151
32	Mature Erythrocytes of Iguana iguana (Squamata, Iguanidae) Possess Functional Mitochondria. PLoS ONE, 2015, 10, e0136770.	2.5	3
33	Mitochondria dynamism: of shape, transport and cell migration. Cellular and Molecular Life Sciences, 2014, 71, 2313-24.	5.4	53
34	Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 451-460.	1.0	70
35	Ho(a)xing Autophagy to Regulate Development. Developmental Cell, 2014, 28, 3-4.	7.0	2
36	A methodology to study chemotaxis in $3\hat{a}\in D$ collagen gels. AICHE Journal, 2013, 59, 4025-4035.	3.6	14

SILVIA CAMPELLO

#	Article	IF	CITATIONS
37	Mitochondrial Dynamics in Cancer and Neurodegenerative and Neuroinflammatory Diseases. International Journal of Cell Biology, 2012, 2012, 1-13.	2.5	54
38	Non-apoptotic roles for death-related molecules: When mitochondria chose cell fate. Experimental Cell Research, 2012, 318, 1309-1315.	2.6	9
39	Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO Journal, 2011, 30, 1195-1208.	7.8	206
40	Adhesion shapes T cells for prompt and sustained T-cell receptor signalling. EMBO Journal, 2010, 29, 4035-4047.	7.8	55
41	Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Reports, 2010, 11, 678-684.	4.5	262
42	The Mitochondrial Pathway: Focus on Shape Changes. , 2009, , 151-175.		0
43	Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. Journal of Experimental Medicine, 2006, 203, 2879-2886.	8.5	296
44	The properties of the mitochondrial megachannel in mitoplasts from human colon carcinoma cells are not influenced by Bax. FEBS Letters, 2005, 579, 3695-3700.	2.8	27
45	Bax Does Not Directly Participate in the Ca2+-induced Permeability Transition of Isolated Mitochondria. Journal of Biological Chemistry, 2004, 279, 37415-37422.	3.4	65
46	Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogenHelicobacter pylori. FEBS Letters, 2003, 543, 184-189.	2.8	84
47	The vacuolating toxin of <i>Helicobacter pylori</i> mimicks the CFTRâ€mediated chloride conductance ¹ . FEBS Letters, 2002, 532, 237-240.	2.8	5
48	How the Loop and Middle Regions Influence the Properties of Helicobacter pylori VacA Channels. Biophysical Journal, 2001, 81, 3204-3215.	0.5	15
49	Vacuolation induced by VacA toxin ofHelicobacter pylorirequires the intracellular accumulation of membrane permeant bases, Clâ~and water. FEBS Letters, 2001, 508, 479-483.	2.8	30