José M Gómez-Elvira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436888/publications.pdf

Version: 2024-02-01

71 papers

1,013 citations

394421 19 h-index 28 g-index

72 all docs 72 docs citations

times ranked

72

571 citing authors

#	Article	IF	Citations
1	Synthesis of high thermal stability Polypropylene copolymers with pyrrole functionality. Materials Today Communications, 2022, 31, 103469.	1.9	2
2	Exploring Functionalities for the Development of High Thermal Stability Polypropylene-Based Dielectrics. ACS Applied Energy Materials, 2021, 4, 25-29.	5.1	3
3	Variation of Ultimate Properties in Extruded iPP-Mesoporous Silica Nanocomposites by Effect of iPP Confinement within the Mesostructures. Polymers, 2020, 12, 70.	4.5	12
4	Effect of iPP molecular weight on its confinement within mesoporous SBA-15 silica in extruded iPPâ^'SBA-15 nanocomposites. Microporous and Mesoporous Materials, 2020, 294, 109945.	4.4	6
5	Chain Features and Their Influence on the Thermal Stability of Poly(propyleneâ€∢i>coàâ€1â€nonene) Copolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900175.	2.2	O
6	A New Insight into the Comonomer Effect through NMR Analysis in Metallocene Catalysed Propene–co–1-Nonene Copolymers. Polymers, 2019, 11, 1266.	4.5	10
7	Confinement of iPP chains in the interior of SBA-15 mesostructure ascertained by gas transport properties in iPP-SBA-15 nanocomposites prepared by extrusion. Journal of Membrane Science, 2019, 569, 137-148.	8.2	10
8	Poly(propylene-co-1-pentene-co-1-heptene) terpolymers: Mechanical and rheological behavior. Polymer, 2018, 156, 44-53.	3.8	2
9	Confinement of iPP crystallites within mesoporous SBA-15 channels in extruded iPP-SBA-15 nanocomposites studied by Small Angle X-ray scattering. Microporous and Mesoporous Materials, 2018, 272, 209-216.	4.4	18
10	Hybrid materials obtained by in situ polymerization based on polypropylene and mesoporous SBA-15 silica particles: Catalytic aspects, crystalline details and mechanical behavior. Polymer, 2018, 151, 218-230.	3.8	19
11	Effect of mesoporous SBA-15 silica on the thermal stability of isotactic polypropylene based nanocomposites prepared by melt extrusion. Polymer Degradation and Stability, 2018, 154, 211-221.	5.8	8
12	NMR study of the comonomer effect in metallocene poly(propyleneâ€ <i>co</i> â€1â€pentene) copolymers synthesized at low temperature. Journal of Polymer Science Part A, 2017, 55, 843-854.	2.3	9
13	Unprecedented dependence of stiffness parameters and crystallinity on comonomer content in rapidly cooled propylene-co-1-pentene copolymers. Polymer, 2017, 130, 17-25.	3.8	15
14	Molecular weight dependence and stereoselective chain cleavage during the early stages of the isotactic polypropylene pyrolysis. Polymer Degradation and Stability, 2017, 143, 26-34.	5.8	14
15	Influence of polymorphism and the new trigonal modification on the mechanical response of isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers. European Polymer Journal, 2017, 97, 366-377.	5.4	1
16	Mesophase Formation in Isotactic Polypropylene Copolymers. , 2016, , 537-559.		0
17	Mesophase features in isotactic poly(propyleneâ€ <i>co</i> â€1â€heptene) copolymers. Polymer International, 2016, 65, 596-604.	3.1	6
18	The role of mesophases in the ordering of polymers. European Polymer Journal, 2016, 81, 661-673.	5.4	6

#	Article	IF	CITATIONS
19	Trigonal δform as a tool for tuning mechanical behavior in poly(propylene-co-1-pentene-co-1-heptene) terpolymers. Polymer, 2016, 99, 112-121.	3.8	20
20	Dependence of phase transitions on composition in isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers. RSC Advances, 2016, 6, 82907-82915.	3.6	4
21	The exceptional magnetic inequivalence in helical form I of poly-1-pentene. Polymer, 2016, 92, 164-169.	3.8	0
22	Microstructure and thermal stability in metallocene iPP-materials: 1-pentene and 1-hexene copolymers. Polymer Degradation and Stability, 2016, 124, 77-86.	5.8	6
23	Mechanical and Transport Properties of Poly(propylene-co-1-heptene) Copolymers and Their Dependence on Monoclinic and/or Mesomorphic Polymorphs. Journal of Physical Chemistry B, 2016, 120, 1347-1356.	2.6	2
24	Fourier Transform Infrared Spectroscopy study of polymorphism in propylene-co-1-pentene copolymers: Trigonal form identification. European Polymer Journal, 2015, 63, 227-236.	5.4	7
25	Synthesis, molecular characterization, evaluation of polymorphic behavior and indentation response in isotactic poly(propylene-co-1-heptene) copolymers. European Polymer Journal, 2015, 64, 52-61.	5.4	15
26	Correlation between chain microstructure and activation energy in the pyrolysis of a high molecular weight isotactic polypropylene. Polymer Degradation and Stability, 2015, 117, 46-57.	5.8	13
27	Microstructure of metallocene isotactic propyleneâ€ <i>co</i> â€1â€penteneâ€ <i>co</i> â€1â€hexene terpolymers Journal of Polymer Science Part A, 2014, 52, 2537-2547.	s. 2.3	12
28	Unravelling the contribution of chain microstructure in the mechanism of the syndiotactic polypropylene pyrolysis. Polymer Degradation and Stability, 2013, 98, 1150-1163.	5.8	7
29	Isotactic poly(propyleneâ€ <i>co</i> â€1â€penteneâ€ <i>co</i> â€1â€hexene) terpolymers: Synthesis, molecular characterization, and evidence of the trigonal polymorph. Journal of Polymer Science Part A, 2013, 51, 3251-3259.	2.3	31
30	Morphology, thermal properties and mechanical relaxations of metallocene syndiotactic polypropylenes. E-Polymers, 2012, 12, .	3.0	1
31	Surface partial discharges aging on thin polymeric nanocomposite films. , 2012, , .		3
32	Syndiotactic polypropylene based nanocomposites: Short and long term electrical characterisation. , 2012, , .		2
33	Tailoring the Formation Rate of the Mesophase in Random Propylene-co-1-pentene Copolymers. Macromolecules, 2012, 45, 6481-6490.	4.8	46
34	Influence of semi-crystalline morphology on the electrical breakdown properties of sPP based materials. , 2011, , .		2
35	Enhancing the formation of the new trigonal polymorph in isotactic propene-1-pentene copolymers: Determination of the X-ray crystallinity. Macromolecular Research, 2011, 19, 1179-1185.	2.4	41
36	The role of microstructure in the pyrolysis of polypropylene. A preliminary study on the syndiotactic stereoisomer. Polymer Degradation and Stability, 2011, 96, 1087-1096.	5.8	4

#	Article	IF	Citations
37	Influence of microstructure and semi-crystalline morphology on the \hat{l}^2 and \hat{l}^3 mechanical relaxations of the metallocene isotactic polypropylene. European Polymer Journal, 2009, 45, 1322-1327.	5.4	15
38	Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins. Science and Technology of Advanced Materials, 2008, 9, 024404.	6.1	3
39	The development of electrical treeing in LDPE and its nanocomposites with spherical silica and fibrous and laminar silicates. Journal Physics D: Applied Physics, 2008, 41, 125208.	2.8	38
40	Resistance to surface partial discharges of LDPE nanocomposites. , 2007, , .		8
41	Electrical treeing inception and growth in LDPE nanocomposites. , 2007, , .		5
42	The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene. The α relaxation. Polymer, 2007, 48, 183-194.	3.8	36
43	Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene. Polymer Degradation and Stability, 2006, 91, 1433-1442.	5.8	12
44	Change of thermal and dynamic-mechanical behaviour of a metallocene isotactic polypropylene during low-temperature thermo-oxidation. Polymer Degradation and Stability, 2005, 87, 543-553.	5.8	20
45	Changes in the crystalline phase during the thermo-oxidation of a metallocene isotactic polypropylene. A DSC study. Polymer Degradation and Stability, 2004, 83, 509-518.	5.8	38
46	Relaxations and thermal stability of low molecular weight predominantly isotactic metallocene and Ziegler–Natta polypropylene. Polymer Degradation and Stability, 2004, 85, 873-882.	5 . 8	18
47	Thermal Oxidation and Its Relation to Chemiluminescence from Polyolefins and Polyamides. Macromolecular Symposia, 2004, 214, 261-278.	0.7	5
48	Melting and $\hat{l}\pm$ Relaxation Effects on the Kinetics of Polypropylene Thermooxidation in the Range 80 \hat{a} °C. Macromolecules, 2002, 35, 5922-5926.	4.8	32
49	The effect of physical parameters of isotactic polypropylene on its oxidisability measured by chemiluminescence method. Contribution to the spreading phenomenon. Polymer Degradation and Stability, 2001, 71, 253-260.	5.8	21
50	The autoacceleration of polypropylene thermo-oxidation in reduced coordinates: effect of the oxidation temperature and of polyolefin structure. Polymer Degradation and Stability, 2001, 72, 23-30.	5 . 8	8
51	Degradative luminescent processes in atactic polypropylene II. Chemiluminescence after a cold He plasma attack at â^180°C. Polymer Degradation and Stability, 2000, 68, 353-362.	5.8	5
52	Photo-oxidation of thick isotactic polypropylene films I. Characterisation of the heterogeneous degradation kinetics. Polymer Degradation and Stability, 2000, 70, 357-364.	5.8	32
53	Photo-oxidation of thick isotactic polypropylene films II. Evolution of the low temperature relaxations and of the melting endotherm along the kinetic stages. Polymer Degradation and Stability, 2000, 71, 99-111.	5.8	23
54	A representation of the autoacceleration stage of polypropylene thermooxidation in reduced coordinates. Polymer Degradation and Stability, 2000, 67, 49-56.	5.8	5

#	Article	IF	CITATIONS
55	Effect of a cold helium plasma at â°180°C on polyolefin films II. The chemiluminescence component. Polymer Degradation and Stability, 1999, 64, 67-73.	5.8	12
56	Chemiluminescence spectral evolution along the thermal oxidation of isotactic polypropylene. Polymer Degradation and Stability, 1999, 65, 113-121.	5.8	47
57	Physicochemical processes along the early stages of the thermal degradation of isotactic polypropylene I. Evolution of the \hat{I}^3 relaxation under oxidative conditions. Polymer Degradation and Stability, 1999, 65, 297-302.	5.8	26
58	Degradative luminescent processes in atactic polypropylenel. Chemiluminescence along the thermooxidation. Polymer Degradation and Stability, 1999, 66, 41-47.	5.8	11
59	Effect of a cold helium plasma at \hat{a} 180 \hat{A} on polyolefin films I. Plasma induced luminescence features of polyethylene and polypropylene. Polymer Degradation and Stability, 1999, 64, 59-66.	5.8	10
60	Tacticity induced molecular microstructure dependence of physical properties of polymers: fundamentals and overview of some tentative correlations. European Polymer Journal, 1998, 34, 833-839.	5.4	13
61	Local microstructure dependence of PVC interaction with solvents. A FTIR verification. Macromolecular Symposia, 1997, 114, 151-157.	0.7	4
62	Influence of tacticity on the thermal degradation of PVC: 8. A comprehensive study of the local isotactic GTTGâ° conformation dependence of the mechanism of initiation. Polymer, 1996, 37, 219-230.	3.8	42
63	On a novel interpretation of PVC antiplasticization based on some local chain conformations. Polymer Bulletin, 1994, 32, 353-359.	3.3	33
64	Effect of some tacticity-depending local chain conformations on the behaviour of poly(vinyl) Tj ETQq0 0 0 rgBT /C Macromolecular Rapid Communications, 1994, 15, 189-196.	Overlock 10 3.9	0 Tf 50 387 20
65	Solvent dependence of stereoselective substitution reaction on poly(vinyl chloride). A useful tool to investigate the tacticity effect on Tg. European Polymer Journal, 1993, 29, 685-688.	5.4	17
66	Influence of tacticity on the thermal degradation of PVC. Part 7â€"Further approaches to the conformational mechanism through a temperature effect study. Polymer Degradation and Stability, 1993, 40, 1-8.	5.8	35
67	Specific polymer-solvent interaction and stereospecificity of nucleophilic substitution reaction of PVC. Polymer Bulletin, 1992, 28, 427-433.	3.3	15
68	Stereoselective nucleophilic substitution on poly(vinyl chloride) in concentrated dioctylphthalate solution as an approach to substitution in the melt. European Polymer Journal, 1989, 25, 361-364.	5.4	2
69	A comprehensive approach to the stereochemical and physical factors in nucleophilic substitution on PVC in the melt. Journal of Applied Polymer Science, 1989, 38, 1685-1698.	2.6	29
70	Configurational and conformational control of chemical modification and thermal degradation of poly(vinyl chloride). Makromolekulare Chemie Macromolecular Symposia, 1989, 29, 185-196.	0.6	13
71	Electrical characterization of polymer-layered silicate nanocomposit., 0, , .		3