
José M GÃ³mez-Elvira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemiluminescence spectral evolution along the thermal oxidation of isotactic polypropylene. Polymer Degradation and Stability, 1999, 65, 113-121.	5.8	47
2	Tailoring the Formation Rate of the Mesophase in Random Propylene-co-1-pentene Copolymers. Macromolecules, 2012, 45, 6481-6490.	4.8	46
3	Influence of tacticity on the thermal degradation of PVC: 8. A comprehensive study of the local isotactic GTTCâ [~] ' conformation dependence of the mechanism of initiation. Polymer, 1996, 37, 219-230.	3.8	42
4	Enhancing the formation of the new trigonal polymorph in isotactic propene-1-pentene copolymers: Determination of the X-ray crystallinity. Macromolecular Research, 2011, 19, 1179-1185.	2.4	41
5	Changes in the crystalline phase during the thermo-oxidation of a metallocene isotactic polypropylene. A DSC study. Polymer Degradation and Stability, 2004, 83, 509-518.	5.8	38
6	The development of electrical treeing in LDPE and its nanocomposites with spherical silica and fibrous and laminar silicates. Journal Physics D: Applied Physics, 2008, 41, 125208.	2.8	38
7	The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene. The α relaxation. Polymer, 2007, 48, 183-194.	3.8	36
8	Influence of tacticity on the thermal degradation of PVC. Part 7—Further approaches to the conformational mechanism through a temperature effect study. Polymer Degradation and Stability, 1993, 40, 1-8.	5.8	35
9	On a novel interpretation of PVC antiplasticization based on some local chain conformations. Polymer Bulletin, 1994, 32, 353-359.	3.3	33
10	Photo-oxidation of thick isotactic polypropylene films I. Characterisation of the heterogeneous degradation kinetics. Polymer Degradation and Stability, 2000, 70, 357-364.	5.8	32
11	Melting and α Relaxation Effects on the Kinetics of Polypropylene Thermooxidation in the Range 80â^'170 °C. Macromolecules, 2002, 35, 5922-5926.	4.8	32
12	Isotactic poly(propyleneâ€ <i>co</i> â€1â€penteneâ€ <i>co</i> â€1â€hexene) terpolymers: Synthesis, molecular characterization, and evidence of the trigonal polymorph. Journal of Polymer Science Part A, 2013, 51, 3251-3259.	2.3	31
13	A comprehensive approach to the stereochemical and physical factors in nucleophilic substitution on PVC in the melt. Journal of Applied Polymer Science, 1989, 38, 1685-1698.	2.6	29
14	Physicochemical processes along the early stages of the thermal degradation of isotactic polypropylene I. Evolution of the γ relaxation under oxidative conditions. Polymer Degradation and Stability, 1999, 65, 297-302.	5.8	26
15	Photo-oxidation of thick isotactic polypropylene films II. Evolution of the low temperature relaxations and of the melting endotherm along the kinetic stages. Polymer Degradation and Stability, 2000, 71, 99-111.	5.8	23
16	The effect of physical parameters of isotactic polypropylene on its oxidisability measured by chemiluminescence method. Contribution to the spreading phenomenon. Polymer Degradation and Stability, 2001, 71, 253-260.	5.8	21
17	Effect of some tacticity-depending local chain conformations on the behaviour of poly(vinyl) Tj ETQq1 1 0.78431 Macromolecular Rapid Communications, 1994, 15, 189-196.	4 rgBT /Ov 3.9	verlock 10 Tf 20
18	Change of thermal and dynamic-mechanical behaviour of a metallocene isotactic polypropylene during low-temperature thermo-oxidation. Polymer Degradation and Stability, 2005, 87, 543-553.	5.8	20

José M GÃ³mez-Elvira

#	Article	IF	CITATIONS
19	Trigonal δ form as a tool for tuning mechanical behavior in poly(propylene-co-1-pentene-co-1-heptene) terpolymers. Polymer, 2016, 99, 112-121.	3.8	20
20	Hybrid materials obtained by in situ polymerization based on polypropylene and mesoporous SBA-15 silica particles: Catalytic aspects, crystalline details and mechanical behavior. Polymer, 2018, 151, 218-230.	3.8	19
21	Relaxations and thermal stability of low molecular weight predominantly isotactic metallocene and Ziegler–Natta polypropylene. Polymer Degradation and Stability, 2004, 85, 873-882.	5.8	18
22	Confinement of iPP crystallites within mesoporous SBA-15 channels in extruded iPP-SBA-15 nanocomposites studied by Small Angle X-ray scattering. Microporous and Mesoporous Materials, 2018, 272, 209-216.	4.4	18
23	Solvent dependence of stereoselective substitution reaction on poly(vinyl chloride). A useful tool to investigate the tacticity effect on Tg. European Polymer Journal, 1993, 29, 685-688.	5.4	17
24	Specific polymer-solvent interaction and stereospecificity of nucleophilic substitution reaction of PVC. Polymer Bulletin, 1992, 28, 427-433.	3.3	15
25	Influence of microstructure and semi-crystalline morphology on the β and γ mechanical relaxations of the metallocene isotactic polypropylene. European Polymer Journal, 2009, 45, 1322-1327.	5.4	15
26	Synthesis, molecular characterization, evaluation of polymorphic behavior and indentation response in isotactic poly(propylene-co-1-heptene) copolymers. European Polymer Journal, 2015, 64, 52-61.	5.4	15
27	Unprecedented dependence of stiffness parameters and crystallinity on comonomer content in rapidly cooled propylene-co-1-pentene copolymers. Polymer, 2017, 130, 17-25.	3.8	15
28	Molecular weight dependence and stereoselective chain cleavage during the early stages of the isotactic polypropylene pyrolysis. Polymer Degradation and Stability, 2017, 143, 26-34.	5.8	14
29	Configurational and conformational control of chemical modification and thermal degradation of poly(vinyl chloride). Makromolekulare Chemie Macromolecular Symposia, 1989, 29, 185-196.	0.6	13
30	Tacticity induced molecular microstructure dependence of physical properties of polymers: fundamentals and overview of some tentative correlations. European Polymer Journal, 1998, 34, 833-839.	5.4	13
31	Correlation between chain microstructure and activation energy in the pyrolysis of a high molecular weight isotactic polypropylene. Polymer Degradation and Stability, 2015, 117, 46-57.	5.8	13
32	Effect of a cold helium plasma at â^'180°C on polyolefin films II. The chemiluminescence component. Polymer Degradation and Stability, 1999, 64, 67-73.	5.8	12
33	Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene. Polymer Degradation and Stability, 2006, 91, 1433-1442.	5.8	12
34	Microstructure of metallocene isotactic propyleneâ€ <i>co</i> â€lâ€penteneâ€ <i>co</i> â€lâ€hexene terpolymer Journal of Polymer Science Part A, 2014, 52, 2537-2547.	^{rs.} 2.3	12
35	Variation of Ultimate Properties in Extruded iPP-Mesoporous Silica Nanocomposites by Effect of iPP Confinement within the Mesostructures. Polymers, 2020, 12, 70.	4.5	12
36	Degradative luminescent processes in atactic polypropylene!. Chemiluminescence along the thermooxidation. Polymer Degradation and Stability, 1999, 66, 41-47.	5.8	11

#	Article	IF	CITATIONS
37	Effect of a cold helium plasma at â^180°C on polyolefin films I. Plasma induced luminescence features of polyethylene and polypropylene. Polymer Degradation and Stability, 1999, 64, 59-66.	5.8	10
38	A New Insight into the Comonomer Effect through NMR Analysis in Metallocene Catalysed Propene–co–1-Nonene Copolymers. Polymers, 2019, 11, 1266.	4.5	10
39	Confinement of iPP chains in the interior of SBA-15 mesostructure ascertained by gas transport properties in iPP-SBA-15 nanocomposites prepared by extrusion. Journal of Membrane Science, 2019, 569, 137-148.	8.2	10
40	NMR study of the comonomer effect in metallocene poly(propyleneâ€ <i>co</i> â€1â€pentene) copolymers synthesized at low temperature. Journal of Polymer Science Part A, 2017, 55, 843-854.	2.3	9
41	The autoacceleration of polypropylene thermo-oxidation in reduced coordinates: effect of the oxidation temperature and of polyolefin structure. Polymer Degradation and Stability, 2001, 72, 23-30.	5.8	8
42	Resistance to surface partial discharges of LDPE nanocomposites. , 2007, , .		8
43	Effect of mesoporous SBA-15 silica on the thermal stability of isotactic polypropylene based nanocomposites prepared by melt extrusion. Polymer Degradation and Stability, 2018, 154, 211-221.	5.8	8
44	Unravelling the contribution of chain microstructure in the mechanism of the syndiotactic polypropylene pyrolysis. Polymer Degradation and Stability, 2013, 98, 1150-1163.	5.8	7
45	Fourier Transform Infrared Spectroscopy study of polymorphism in propylene-co-1-pentene copolymers: Trigonal form identification. European Polymer Journal, 2015, 63, 227-236.	5.4	7
46	Mesophase features in isotactic poly(propyleneâ€ <i>co</i> ″â€heptene) copolymers. Polymer International, 2016, 65, 596-604.	3.1	6
47	The role of mesophases in the ordering of polymers. European Polymer Journal, 2016, 81, 661-673.	5.4	6
48	Microstructure and thermal stability in metallocene iPP-materials: 1-pentene and 1-hexene copolymers. Polymer Degradation and Stability, 2016, 124, 77-86.	5.8	6
49	Effect of iPP molecular weight on its confinement within mesoporous SBA-15 silica in extruded iPPâ^'SBA-15 nanocomposites. Microporous and Mesoporous Materials, 2020, 294, 109945.	4.4	6
50	Degradative luminescent processes in atactic polypropylene II. Chemiluminescence after a cold He plasma attack at Ⱂ180°C. Polymer Degradation and Stability, 2000, 68, 353-362.	5.8	5
51	A representation of the autoacceleration stage of polypropylene thermooxidation in reduced coordinates. Polymer Degradation and Stability, 2000, 67, 49-56.	5.8	5
52	Thermal Oxidation and Its Relation to Chemiluminescence from Polyolefins and Polyamides. Macromolecular Symposia, 2004, 214, 261-278.	0.7	5
53	Electrical treeing inception and growth in LDPE nanocomposites. , 2007, , .		5
54	Local microstructure dependence of PVC interaction with solvents. A FTIR verification. Macromolecular Symposia, 1997, 114, 151-157.	0.7	4

José M GÃ³mez-Elvira

#	Article	IF	CITATIONS
55	The role of microstructure in the pyrolysis of polypropylene. A preliminary study on the syndiotactic stereoisomer. Polymer Degradation and Stability, 2011, 96, 1087-1096.	5.8	4
56	Dependence of phase transitions on composition in isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers. RSC Advances, 2016, 6, 82907-82915.	3.6	4
57	Electrical characterization of polymer-layered silicate nanocomposit. , 0, , .		3
58	Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins. Science and Technology of Advanced Materials, 2008, 9, 024404.	6.1	3
59	Surface partial discharges aging on thin polymeric nanocomposite films. , 2012, , .		3
60	Exploring Functionalities for the Development of High Thermal Stability Polypropylene-Based Dielectrics. ACS Applied Energy Materials, 2021, 4, 25-29.	5.1	3
61	Stereoselective nucleophilic substitution on poly(vinyl chloride) in concentrated dioctylphthalate solution as an approach to substitution in the melt. European Polymer Journal, 1989, 25, 361-364.	5.4	2
62	Influence of semi-crystalline morphology on the electrical breakdown properties of sPP based materials. , 2011, , .		2
63	Syndiotactic polypropylene based nanocomposites: Short and long term electrical characterisation. , 2012, , .		2
64	Mechanical and Transport Properties of Poly(propylene-co-1-heptene) Copolymers and Their Dependence on Monoclinic and/or Mesomorphic Polymorphs. Journal of Physical Chemistry B, 2016, 120, 1347-1356.	2.6	2
65	Poly(propylene-co-1-pentene-co-1-heptene) terpolymers: Mechanical and rheological behavior. Polymer, 2018, 156, 44-53.	3.8	2
66	Synthesis of high thermal stability Polypropylene copolymers with pyrrole functionality. Materials Today Communications, 2022, 31, 103469.	1.9	2
67	Morphology, thermal properties and mechanical relaxations of metallocene syndiotactic polypropylenes. E-Polymers, 2012, 12, .	3.0	1
68	Influence of polymorphism and the new trigonal modification on the mechanical response of isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers. European Polymer Journal, 2017, 97, 366-377.	5.4	1
69	Mesophase Formation in Isotactic Polypropylene Copolymers. , 2016, , 537-559.		0
70	The exceptional magnetic inequivalence in helical form I of poly-1-pentene. Polymer, 2016, 92, 164-169.	3.8	0
71	Chain Features and Their Influence on the Thermal Stability of Poly(propyleneâ€ <i>co</i> â€lâ€nonene) Copolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900175.	2.2	Ο