Chuanxi Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435716/publications.pdf

Version: 2024-02-01

414414 430874 1,657 38 18 32 citations h-index g-index papers 40 40 40 1865 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MG53 attenuates nitrogen mustardâ€induced acute lung injury. Journal of Cellular and Molecular Medicine, 2022, 26, 1886-1895.	3 . 6	5
2	Influenza virus replication in cardiomyocytes drives heart dysfunction and fibrosis. Science Advances, 2022, 8, eabm5371.	10.3	11
3	Mitochondrial Membrane Potential Identifies a Subpopulation of Mesenchymal Progenitor Cells to Promote Angiogenesis and Myocardial Repair. Cells, 2022, 11, 1713.	4.1	4
4	Recombinant MG53 Protein Protects Mice from Lethal Influenza Virus Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 254-257.	5 . 6	15
5	MG53 as a Novel Therapeutic Protein to Treat Acute Lung Injury. Military Medicine, 2021, 186, 339-345.	0.8	9
6	A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	48
7	Cardiac effects and clinical applications of MG53. Cell and Bioscience, 2021, 11, 115.	4.8	13
8	A Methyltransferase-Defective Vesicular Stomatitis Virus-Based SARS-CoV-2 Vaccine Candidate Provides Complete Protection against SARS-CoV-2 Infection in Hamsters. Journal of Virology, 2021, 95, e0059221.	3.4	11
9	MG53 suppresses NF-l̂ºB activation to mitigate age-related heart failure. JCI Insight, 2021, 6, .	5.0	17
10	MG53 suppresses interferon- \hat{l}^2 and inflammation via regulation of ryanodine receptor-mediated intracellular calcium signaling. Nature Communications, 2020, 11, 3624.	12.8	32
11	Human Cardiac Progenitor Cells Enhance Exosome Release and Promote Angiogenesis Under Physoxia. Frontiers in Cell and Developmental Biology, 2020, 8, 130.	3.7	21
12	MG53 Does Not Manifest the Development of Diabetes in <i>db/db</i> Mice. Diabetes, 2020, 69, 1052-1064.	0.6	36
13	Inhibition of p16INK4A to Rejuvenate Aging Human Cardiac Progenitor Cells via the Upregulation of Anti-oxidant and NFήB Signal Pathways. Stem Cell Reviews and Reports, 2018, 14, 612-625.	5. 6	21
14	Sulfiredoxin-1 enhances cardiac progenitor cell survival against oxidative stress via the upregulation of the ERK/NRF2 signal pathway. Free Radical Biology and Medicine, 2018, 123, 8-19.	2.9	33
15	Current Progress in the Rejuvenation of Aging Stem/Progenitor Cells for Improving the Therapeutic Effectiveness of Myocardial Repair. Stem Cells International, 2018, 2018, 1-9.	2.5	13
16	Mitsugumin 53 Regulates Extracellular Ca 2+ Entry and Intracellular CA 2+ Release via Orai1 and RyR1 in Skeletal Muscle. Biophysical Journal, 2017, 112, 98a.	0.5	0
17	Cytoglobin Promotes Cardiac Progenitor Cell Survival against Oxidative Stress via the Upregulation of the NFήB/iNOS Signal Pathway and Nitric Oxide Production. Scientific Reports, 2017, 7, 10754.	3.3	30
18	Zinc Binding to MG53 Facilitates Repair of Injury to Cell Membrane. Biophysical Journal, 2016, 110, 589a.	0.5	O

#	Article	IF	CITATIONS
19	Mitsugumin 53 regulates extracellular Ca2+ entry and intracellular Ca2+ release via Orai1 and RyR1 in skeletal muscle. Scientific Reports, 2016, 6, 36909.	3.3	24
20	Strategies to Enhance the Effectiveness of Adult Stem Cell Therapy for Ischemic Heart Diseases Affecting the Elderly Patients. Stem Cell Reviews and Reports, 2016, 12, 214-223.	5.6	15
21	Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 9733-9747.	3.4	21
22	Preconditioning Human Cardiac Stem Cells with an HO-1 Inducer Exerts Beneficial Effects After Cell Transplantation in the Infarcted Murine Heart. Stem Cells, 2015, 33, 3596-3607.	3.2	39
23	Zinc Binding to MG53 Protein Facilitates Repair of Injury to Cell Membranes. Journal of Biological Chemistry, 2015, 290, 13830-13839.	3.4	31
24	Recombinant MG53 Protein Modulates Therapeutic Cell Membrane Repair in Treatment of Muscular Dystrophy. Science Translational Medicine, 2012, 4, 139ra85.	12.4	165
25	Enhancing Muscle Membrane Repair by Gene Delivery of MG53 Ameliorates Muscular Dystrophy and Heart Failure in Î-Sarcoglycan-deficient Hamsters. Molecular Therapy, 2012, 20, 727-735.	8.2	82
26	Nonmuscle myosin IIA facilitates vesicle trafficking for MG53â€mediated cell membrane repair. FASEB Journal, 2012, 26, 1875-1883.	0.5	64
27	The Heme Oxygenase 1 Inducer (CoPP) Protects Human Cardiac Stem Cells against Apoptosis through Activation of the Extracellular Signal-regulated Kinase (ERK)/NRF2 Signaling Pathway and Cytokine Release. Journal of Biological Chemistry, 2012, 287, 33720-33732.	3.4	89
28	Recombinant MG53 Protein can Increase Membrane Repair Capacity andÂlmprove Pathology in Dystrophic Mouse Muscle. Biophysical Journal, 2012, 102, 720a.	0.5	0
29	Non-Muscle Myosin IIA Facilitates Vesicle Trafficking for MG53-Mediated Cell Membrane Repair. Biophysical Journal, 2011, 100, 446a.	0.5	0
30	Leucine-Zipper Mediated Intermolecular Interaction between MG53 is Essential for Cellular Membrane Repair. Biophysical Journal, 2010, 98, 153a.	0.5	0
31	MG53 Regulates Membrane Budding and Exocytosis in Muscle Cells. Journal of Biological Chemistry, 2009, 284, 3314-3322.	3.4	99
32	Membrane Repair Defects in Muscular Dystrophy Are Linked to Altered Interaction between MG53, Caveolin-3, and Dysferlin. Journal of Biological Chemistry, 2009, 284, 15894-15902.	3.4	227
33	The amino-terminal peptide of Bax perturbs intracellular Ca ²⁺ homeostasis to enhance apoptosis in prostate cancer cells. American Journal of Physiology - Cell Physiology, 2009, 296, C267-C272.	4.6	17
34	MG53 nucleates assembly of cell membrane repair machinery. Nature Cell Biology, 2009, 11, 56-64.	10.3	396
35	MG53 Nucleates Assembly Of Cell Membrane Repair Machinery. Biophysical Journal, 2009, 96, 361a.	0.5	6
36	The Amino-terminal Peptide Of Bax Perturbs Intracellular Ca2+ Homeostasis To Enhance Apoptosis In Prostate Cancer Cells. Biophysical Journal, 2009, 96, 424a.	0.5	0

CHUANXI CAI

#	Article	IF	CITATIONS
37	Caveolae/Caveolin-1 Are Important Modulators of Store-Operated Calcium Entry in Hs578/T Breast Cancer Cells. Journal of Pharmacological Sciences, 2008, 106, 287-294.	2.5	15
38	The Presenilin-2 Loop Peptide Perturbs Intracellular Ca2+ Homeostasis and Accelerates Apoptosis. Journal of Biological Chemistry, 2006, 281, 16649-16655.	3.4	40