Jun-Jie Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435492/publications.pdf

Version: 2024-02-01

15504 17592 15,534 167 65 121 citations h-index g-index papers 167 167 167 19044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe ²⁺ and protection of <i>Monascus</i> pigments. Nanoscale, 2020, 12, 3068-3075.	5.6	44
2	A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing. Nanoscale Advances, 2020, 2, 1583-1589.	4.6	20
3	Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. Journal of Materials Chemistry B, 2020, 8, 1191-1201.	5.8	41
4	Optimization of Antibacterial Efficacy of Noble-Metal-Based Core–Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702.	14.6	61
5	Influences of simulated gastrointestinal environment on physicochemical properties of gold nanoparticles and their implications on intestinal epithelial permeability. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2019, 37, 116-131.	2.9	6
6	Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2019, 37, 99-115.	2.9	17
7	Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity. Journal of Nanobiotechnology, 2019, 17, 54.	9.1	33
8	A welding phenomenon of dissimilar nanoparticles in dispersion. Nature Communications, 2019, 10, 219.	12.8	18
9	Photogenerated Charge Carriers in Molybdenum Disulfide Quantum Dots with Enhanced Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4858-4866.	8.0	97
10	Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Diterfaces, 2018, 10, 8443-8450.	8.0	165
11	Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 84-97.	2.9	14
12	Influence of gastrointestinal environment on free radical generation of silver nanoparticles and implications for their cytotoxicity. NanoImpact, 2018, 10, 144-152.	4.5	26
13	Sparks fly between ascorbic acid and iron-based nanozymes: A study on Prussian blue nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 163, 379-384.	5.0	23
14	Formation of PtCuCo Trimetallic Nanostructures with Enhanced Catalytic and Enzyme-like Activities for Biodetection. ACS Applied Nano Materials, 2018, 1, 222-231.	5.0	46
15	Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. Nanomedicine, 2018, 13, 733-747.	3.3	9
16	Light-Induced Assembly of Metal Nanoparticles on ZnO Enhances the Generation of Charge Carriers, Reactive Oxygen Species, and Antibacterial Activity. Journal of Physical Chemistry C, 2018, 122, 29414-29425.	3.1	26
17	Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. Journal of Nanobiotechnology, 2018, 16, 86.	9.1	48
18	Synthesis of Pt Hollow Nanodendrites with Enhanced Peroxidaseâ€Like Activity against Bacterial Infections: Implication for Wound Healing. Advanced Functional Materials, 2018, 28, 1801484.	14.9	205

#	Article	IF	Citations
19	Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO ₂ nanostructures with enhanced activity. Physical Chemistry Chemical Physics, 2018, 20, 16117-16125.	2.8	35
20	Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules, 2018, 19, 3502-3514.	5.4	34
21	Platinum nanoparticles: an avenue for enhancing the release of nitric oxide from $\langle i \rangle S \langle i \rangle$ -nitroso- $\langle i \rangle N \langle i \rangle$ -acetylpenicillamine and $\langle i \rangle S \langle i \rangle$ -nitrosoglutathione. Nanoscale, 2018, 10, 11176-11185.	5. 6	18
22	Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 2017, 91, 509-519.	4.2	139
23	Formation of iron oxide/Pd hybrid nanostructures with enhanced peroxidase-like activity and catalytic reduction of 4-nitrophenol. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2017, 35, 159-172.	2.9	13
24	Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials. Small, 2017, 13, 1602855.	10.0	32
25	Effects of P25 TiO ₂ Nanoparticles on the Free Radical-Scavenging Ability of Antioxidants upon Their Exposure to Simulated Sunlight. Journal of Agricultural and Food Chemistry, 2017, 65, 9893-9901.	5.2	9
26	Spectroelectrochemical Reverse Engineering DemonstratesThat Melanin's Redox and Radical Scavenging Activities Are Linked. Biomacromolecules, 2017, 18, 4084-4098.	5.4	63
27	Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer. Environmental Science & Technology, 2017, 51, 10154-10161.	10.0	131
28	Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Advances, 2017, 7, 52210-52217.	3.6	102
29	Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2017, 35, 223-238.	2.9	15
30	Platinum nanoparticles inhibit antioxidant effects of vitamin C via ascorbate oxidase-mimetic activity. Journal of Materials Chemistry B, 2016, 4, 7895-7901.	5.8	33
31	Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. Nano Research, 2016, 9, 1663-1673.	10.4	38
32	Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano, 2016, 10, 8690-8699.	14.6	188
33	Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods. Scientific Reports, 2016, 6, 24101.	3.3	1
34	Facet Energy <i>versus </i> Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano, 2016, 10, 10436-10445.	14.6	247
35	Production of Reactive Oxygen Species and Electrons from Photoexcited ZnO and ZnS Nanoparticles: A Comparative Study for Unraveling their Distinct Photocatalytic Activities. Journal of Physical Chemistry C, 2016, 120, 3187-3195.	3.1	127
36	Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. Journal of the American Chemical Society, 2016, 138, 5860-5865.	13.7	611

#	Article	IF	CITATIONS
37	Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Particle and Fibre Toxicology, 2015, 13, 21.	6.2	102
38	Selfâ€Assembly of Amphiphilic Block Copolymerâ€Tethered Nanoparticles: a New Approach to Nanoscale Design of Functional Materials. Macromolecular Rapid Communications, 2015, 36, 711-725.	3.9	44
39	Using Hollow Carbon Nanospheres as a Light-Induced Free Radical Generator To Overcome Chemotherapy Resistance. Journal of the American Chemical Society, 2015, 137, 1947-1955.	13.7	182
40	Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles. Nanoscale, 2015, 7, 4505-4513.	5.6	25
41	Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicology Letters, 2015, 237, 61-71.	0.8	100
42	Composition Directed Generation of Reactive Oxygen Species in Irradiated Mixed Metal Sulfides Correlated with Their Photocatalytic Activities. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16440-16449.	8.0	65
43	Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19709-19717.	8.0	98
44	Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications. Physical Chemistry Chemical Physics, 2015, 17, 24937-24943.	2.8	51
45	Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Research, 2015, 8, 4024-4037.	10.4	28
46	Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid. Nanoscale, 2015, 7, 2651-2658.	5.6	7
47	Acquired Superoxideâ€Scavenging Ability of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 1832-1835.	13.8	179
48	UVA photoirradiation of benzo[<i>a</i>]pyrene metabolites: induction of cytotoxicity, reactive oxygen species, and lipid peroxidation. Toxicology and Industrial Health, 2015, 31, 898-910.	1.4	26
49	Predicting and identifying reactive oxygen species and electrons for photocatalytic metal sulfide micro–nano structures. Journal of Catalysis, 2014, 320, 97-105.	6.2	81
50	Metabolic Activation of Pyrrolizidine Alkaloids Leading to Phototoxicity and Photogenotoxicity in Human HaCaT Keratinocytes. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32, 362-384.	2.9	13
51	FD&C Yellow No. 5 (Tartrazine) Degradation via Reactive Oxygen Species Triggered by TiO ₂ and Au/TiO ₂ Nanoparticles Exposed to Simulated Sunlight. Journal of Agricultural and Food Chemistry, 2014, 62, 12052-12060.	5.2	28
52	Reactive oxygen species-related activities ofÂnano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis, 2014, 22, 86-94.	1.9	198
53	Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity. Materials Research Bulletin, 2014, 53, 246-250.	5.2	28
54	Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. Journal of Food and Drug Analysis, 2014, 22, 49-63.	1,9	163

#	Article	IF	Citations
55	Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au Hybrid Nanostructures with Enhanced Photocatalytic and Antibacterial Activity. Journal of the American Chemical Society, 2014, 136, 750-757.	13.7	716
56	Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag ₂ S Micro-Nano Structures. Journal of Physical Chemistry C, 2014, 118, 21447-21456.	3.1	106
57	Context-Dependent Redox Properties of Natural Phenolic Materials. Biomacromolecules, 2014, 15, 1653-1662.	5.4	71
58	pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale, 2014, 6, 11904-11910.	5.6	171
59	Co ₃ O ₄ Nanoparticles with Multi-Enzyme Activities and Their Application in Immunohistochemical Assay. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1959-1970.	8.0	357
60	Unraveling the Enhanced Photocatalytic Activity and Phototoxicity of ZnO/Metal Hybrid Nanostructures from Generation of Reactive Oxygen Species and Charge Carriers. ACS Applied Materials & Amp; Interfaces, 2014, 6, 15527-15535.	8.0	99
61	Electronic modulation of biochemical signal generation. Nature Nanotechnology, 2014, 9, 605-610.	31.5	52
62	Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Research, 2014, 7, 1719-1730.	10.4	47
63	Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. Journal of Food and Drug Analysis, 2014, 22, 76-85.	1.9	78
64	In situ fabrication of Cu ₂ ZnSnS ₄ nanoflake thin films on both rigid and flexible substrates. CrystEngComm, 2014, 16, 6244-6249.	2.6	30
65	Enzyme-Like Activity of Nanomaterials. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32, 186-211.	2.9	139
66	Effect of Silver Nanomaterials on the Activity of Thiol-Containing Antioxidants. Journal of Agricultural and Food Chemistry, 2013, 61, 7855-7862.	5.2	25
67	Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC Advances, 2013, 3, 6095.	3.6	72
68	Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets. Journal of the American Chemical Society, 2013, 135, 15750-15753.	13.7	560
69	UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides â€. International Journal of Environmental Research and Public Health, 2013, 10, 1062-1084.	2.6	17
70	Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale, 2013, 5, 10573.	5.6	233
71	Physicochemical Origin for Free Radical Generation of Iron Oxide Nanoparticles in Biomicroenvironment: Catalytic Activities Mediated by Surface Chemical States. Journal of Physical Chemistry C, 2013, 117, 383-392.	3.1	131
72	Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials, 2013, 34, 765-773.	11.4	319

#	Article	IF	CITATIONS
73	Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale, 2013, 5, 1583.	5.6	72
74	Coreâ€"Shell Structure Dependent Reactivity of Fe@Fe ₂ O ₃ Nanowires on Aerobic Degradation of 4-Chlorophenol. Environmental Science & Environmental Scien	10.0	272
75	Phototoxicity of Zinc Oxide Nanoparticles in HaCaT Keratinocytes-Generation of Oxidative DNA Damage During UVA and Visible Light Irradiation. Journal of Nanoscience and Nanotechnology, 2013, 13, 3880-3888.	0.9	56
76	Phototoxicity of Kava â€" Formation of Reactive Oxygen Species Leading to Lipid Peroxidation and DNA Damage. The American Journal of Chinese Medicine, 2012, 40, 1271-1288.	3.8	24
77	Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials., 2012, , 375-400.		6
78	Nanoscale ZnO Induces Cytotoxicity and DNA Damage in Human Cell Lines and Rat Primary Neuronal Cells. Journal of Nanoscience and Nanotechnology, 2012, 12, 2126-2135.	0.9	55
79	The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials, 2012, 4, e32-e32.	7.9	112
80	Single-Walled Carbon Nanotubes Alter Cytochrome <i>c</i> Electron Transfer and Modulate Mitochondrial Function. ACS Nano, 2012, 6, 10486-10496.	14.6	88
81	Dual Role of Selected Antioxidants Found in Dietary Supplements: Crossover between Anti- and Pro-Oxidant Activities in the Presence of Copper. Journal of Agricultural and Food Chemistry, 2012, 60, 2554-2561.	5.2	56
82	Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials, 2012, 33, 7547-7555.	11.4	320
83	Unraveling Stressâ€Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism. Advanced Materials, 2012, 24, 5391-5397.	21.0	213
84	Graphene: Unraveling Stress-Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism (Adv. Mater. 39/2012). Advanced Materials, 2012, 24, 5390-5390.	21.0	2
85	Phototoxicity of nano titanium dioxides in HaCaT keratinocytesâ€"Generation of reactive oxygen species and cell damage. Toxicology and Applied Pharmacology, 2012, 263, 81-88.	2.8	205
86	The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes. Archives of Pharmacal Research, 2012, 35, 1259-1267.	6.3	52
87	Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity. ACS Nano, 2012, 6, 4001-4012.	14.6	717
88	Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sensors and Actuators B: Chemical, 2012, 166-167, 708-714.	7.8	171
89	Formation of PdPt Alloy Nanodots on Gold Nanorods: Tuning Oxidase-like Activities via Composition. Langmuir, 2011, 27, 2796-2803.	3 . 5	131
90	Photoirradiation of dehydropyrrolizidine alkaloidsâ€"Formation of reactive oxygen species and induction of lipid peroxidation. Toxicology Letters, 2011, 205, 302-309.	0.8	37

#	Article	IF	Citations
91	Photoirradiation of polycyclic aromatic hydrocarbon diones by UVA light leading to lipid peroxidation. Chemosphere, 2011, 85, 83-91.	8.2	14
92	Application of ESR spin label oximetry in food science. Magnetic Resonance in Chemistry, 2011, 49, S105-12.	1.9	22
93	Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 2011, 32, 1139-1147.	11.4	531
94	Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials, 2011, 32, 1611-1618.	11.4	397
95	Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide. Journal of Cosmetic Science, 2011, 62, 535-47.	0.1	14
96	Photoirradiation of azulene and guaiazuleneâ€"Formation of reactive oxygen species and induction of lipid peroxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 123-128.	3.9	27
97	Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. Journal of Chromatography A, 2010, 1217, 5470-5476.	3.7	109
98	Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chemistry, 2010, 120, 199-204.	8.2	67
99	Grape Seed Proanthocyanidins Ameliorate Doxorubicin-Induced Cardiotoxicity. The American Journal of Chinese Medicine, 2010, 38, 569-584.	3.8	43
100	Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. LWT - Food Science and Technology, 2010, 43, 1409-1413.	5.2	121
101	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7449-7454.	7.1	233
102	Regulation of Influenza Virus-Caused Oxidative Stress by Kegan Liyan Oral Prescription, as Monitored by Ascorbyl Radical ESR Signals. The American Journal of Chinese Medicine, 2009, 37, 1167-1177.	3.8	9
103	Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicology and Applied Pharmacology, 2009, 241, 163-172.	2.8	161
104	Light-induced toxic effects of tamoxifen: A chemotherapeutic and chemopreventive agent. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 50-56.	3.9	12
105	The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30, 611-621.	11.4	388
106	Difference in Phototoxicity of Cyclodextrin Complexed Fullerene $[(\hat{l}^3\text{-CyD})<\text{sub}>2 C<\text{sub}>60]$ and Its Aggregated Derivatives toward Human Lens Epithelial Cells. Chemical Research in Toxicology, 2009, 22, 660-667.	3.3	60
107	Disruption of microfilaments by cytochalasin B decreases accumulation of cisplatin in human epidermal carcinoma and liver carcinoma cell lines. Cancer Chemotherapy and Pharmacology, 2008, 62, 977-984.	2.3	8
108	Effects of Wheat Antioxidants on Oxygen Diffusionâ [^] Concentration Products in Liposomes and mRNA Levels of HMG-CoA Reductase and Cholesterol 7α-Hydroxylase in Primary Rat Hepatocytes. Journal of Agricultural and Food Chemistry, 2008, 56, 5033-5042.	5.2	13

#	Article	IF	Citations
109	UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation. International Journal of Environmental Research and Public Health, 2008, 5, 26-31.	2.6	15
110	Inhibition of Tumor Growth by Endohedral Metallofullerenol Nanoparticles Optimized as Reactive Oxygen Species Scavenger. Molecular Pharmacology, 2008, 74, 1132-1140.	2.3	117
111	SIRT1 Contributes in Part to Cisplatin Resistance in Cancer Cells by Altering Mitochondrial Metabolism. Molecular Cancer Research, 2008, 6, 1499-1506.	3.4	101
112	Effects of interactions of EGCG and Cd2+ on the growth of PC-3 cells and their mechanisms. Food and Chemical Toxicology, 2007, 45, 244-249.	3.6	27
113	UVA photoirradiation of anhydroretinol – formation of singlet oxygen and superoxide. Toxicology and Industrial Health, 2007, 23, 625-631.	1.4	16
114	Effects of Metal Ions, Catechins, and Their Interactions on Prostate Cancer. Critical Reviews in Food Science and Nutrition, 2007, 47, 711-719.	10.3	12
115	Electron Spin Resonance Estimation of Hydroxyl Radical Scavenging Capacity for Lipophilic Antioxidants. Journal of Agricultural and Food Chemistry, 2007, 55, 3325-3333.	5. 2	41
116	Photo-irradiation of Aloe vera by UVA—Formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidationâ~†. Toxicology Letters, 2007, 168, 165-175.	0.8	51
117	Enhancing Antioxidant, Antiproliferation, and Free Radical Scavenging Activities in Strawberries with Essential Oils. Journal of Agricultural and Food Chemistry, 2007, 55, 6527-6532.	5.2	99
118	Fatty acids in tea shoots (Camellia sinensis (L.) O. Kuntze) and their effects on the growth of retinal RF/6A endothelial cell lines. Molecular Nutrition and Food Research, 2007, 51, 221-228.	3.3	9
119	Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chemistry, 2007, 100, 990-997.	8.2	221
120	Role of Zn2+ in epigallocatechin gallate affecting the growth of PC-3 cells. Journal of Trace Elements in Medicine and Biology, 2007, 21, 125-131.	3.0	12
121	Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. European Journal of Pharmacology, 2007, 566, 58-66.	3 . 5	90
122	Photodecomposition of Vitamin A and Photobiological Implications for the Skinâ€. Photochemistry and Photobiology, 2007, 83, 409-424.	2.5	50
123	UVA photoirradiation of retinyl palmitateâ€"Formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Toxicology Letters, 2006, 163, 30-43.	0.8	69
124	Novel Fluorometric Assay for Hydroxyl Radical Scavenging Capacity (HOSC) Estimation. Journal of Agricultural and Food Chemistry, 2006, 54, 617-626.	5.2	137
125	Effects of Conjugated Linoleic Acid (CLA) Isomers on Oxygen Diffusionâ [°] Concentration Products in Liposomes and Phospholipid Solutions. Journal of Agricultural and Food Chemistry, 2006, 54, 7287-7293.	5.2	17
126	Effects of Postharvest Treatment and Heat Stress on Availability of Wheat Antioxidants. Journal of Agricultural and Food Chemistry, 2006, 54, 5623-5629.	5.2	94

#	Article	IF	Citations
127	Photoirradiation of Retinyl Palmitate in Ethanol with Ultraviolet Light - Formation of Photodecomposition Products, Reactive Oxygen Species, and Lipid Peroxides. International Journal of Environmental Research and Public Health, 2006, 3, 185-190.	2.6	25
128	Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu2+. Food Chemistry, 2006, 95, 108-115.	8.2	13
129	ESR determination of the reactions between selected phenolic acids and free radicals or transition metals. Food Chemistry, 2006, 95, 446-457.	8.2	7 5
130	Antioxidant effects of ginsenoside Re in cardiomyocytes. European Journal of Pharmacology, 2006, 532, 201-207.	3.5	155
131	Photoirradiation of representative polycyclic aromatic hydrocarbons and twelve isomeric methylbenz[a]anthracene with UVA light: formation of lipid peroxidation. Toxicology and Industrial Health, 2006, 22, 147-156.	1.4	18
132	Antioxidative Activity of Conjugated Linoleic Acid Determined by ESR., 2006, , 183-200.		0
133	Photodecomposition and Phototoxicity of Natural Retinoids. International Journal of Environmental Research and Public Health, 2005, 2, 147-155.	2.6	58
134	American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 2005, 56, 63-69.	2.3	53
135	Phenolic Acid, Tocopherol and Carotenoid Compositions, and Antioxidant Functions of Hard Red Winter Wheat Bran. Journal of Agricultural and Food Chemistry, 2005, 53, 3916-3922.	5.2	106
136	Different roles for K+ channels in cisplatin-resistant cell lines argue against a critical role for these channels in cisplatin resistance. Anticancer Research, 2005, 25, 4113-22.	1.1	8
137	Synergistic Effect of Scutellaria baicalensis and Grape Seed Proanthocyanidins on Scavenging Reactive Oxygen Species in Vitro. The American Journal of Chinese Medicine, 2004, 32, 89-95.	3.8	39
138	Oral administration of Crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils. Journal of Neurochemistry, 2004, 90, 211-219.	3.9	76
139	Effects of Antioxidant Herbs on Chemotherapy-Induced Nausea and Vomiting in a Rat-Pica Model. The American Journal of Chinese Medicine, 2004, 32, 897-905.	3.8	30
140	Growth Inhibition of Prostate Cancer Cells by Epigallocatechin Gallate in the Presence of Cu2+. Journal of Agricultural and Food Chemistry, 2004, 52, 462-466.	5.2	44
141	Changes in biophysical parameters of plasma membranes influence cisplatin resistance of sensitive and resistant epidermal carcinoma cells. Experimental Cell Research, 2004, 293, 283-291.	2.6	25
142	Spin-Label EPR T1Values Using Saturation Recovery from 2 to 35 GHzâ€. Journal of Physical Chemistry B, 2004, 108, 9524-9529.	2.6	48
143	Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria. Biochemical Pharmacology, 2003, 65, 51-57.	4.4	56
144	P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Research, 2003, 63, 3084-91.	0.9	55

#	Article	IF	Citations
145	Pulse EPR Detection of Lipid Exchange between Protein-Rich Raft and Bulk Domains in the Membrane: Methodology Development and Its Application to Studies of Influenza Viral Membrane. Biophysical Journal, 2001, 80, 738-748.	0.5	99
146	Effects of conjugated linoleic acid on oxygen diffusion-concentration product and depletion in membranes by using electron spin resonance spin-label oximetry. Lipids, 1999, 34, 1017-1023.	1.7	14
147	Effects of fumonisin B1 on lipid peroxidation in membranes. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1371, 134-142.	2.6	60
148	Oxidative Damage to Nucleic Acids Photosensitized by Titanium Dioxide. Free Radical Biology and Medicine, 1997, 23, 851-858.	2.9	285
149	Effects of lutein and cholesterol on alkyl chain bending in lipid bilayers: a pulse electron spin resonance spin labeling study. Biophysical Journal, 1996, 71, 832-839.	0.5	71
150	Effects of Fumonisin B1and (Hydrolyzed) Fumonisin Backbone AP1on Membranes: A Spin-Label Study. Archives of Biochemistry and Biophysics, 1996, 335, 13-22.	3.0	20
151	Effects of Fumonisin B1on Oxygen Transport in Membranes. Biochemical and Biophysical Research Communications, 1996, 225, 250-255.	2.1	13
152	Effect of combination of suboptimal concentrations of P-glycoprotein blockers on the proliferation of MDR1 gene expressing cells., 1996, 65, 389-397.		19
153	Molecular Organization and Dynamics in Bacteriorhodopsin-Rich Reconstituted Membranes: Discrimination of Lipid Environments by the Oxygen Transport Parameter Using a Pulse ESR Spin-Labeling Technique. Biochemistry, 1994, 33, 4947-4952.	2.5	89
154	Hydrophobic Barriers of Lipid Bilayer Membranes Formed by Reduction of Water Penetration by Alkyl Chain Unsaturation and Cholesterol. Biochemistry, 1994, 33, 7670-7681.	2.5	312
155	Resolution of phospholipid conformational heterogeneity in model membranes by spin-label EPR and frequency-domain fluorescence spectroscopy. Biophysical Journal, 1991, 59, 654-669.	0.5	11
156	Advances in spin label oximetry. Pure and Applied Chemistry, 1990, 62, 255-260.	1.9	32
157	Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance. Biophysical Journal, 1990, 58, 713-720.	0.5	34
158	Use of high observing power in electron spin resonance saturationâ€recovery experiments in spinâ€labeled membranes. Journal of Chemical Physics, 1989, 91, 6029-6035.	3.0	21
159	Evidence that the two free sulfhydryl groups of plasma fibronectin are in different local environments. Saturation-recovery electron spin resonance study. Biophysical Journal, 1989, 56, 395-400.	0.5	6
160	Solution of the nitroxide spin-label spectral overlap problem using pulse electron spin resonance. Biophysical Journal, 1988, 53, 525-531.	0.5	28
161	Spin-Label Saturation-Recovery Electron Spin Resonance Measurements of Oxygen Transport in Membranes*. Zeitschrift Fur Physikalische Chemie, 1987, 153, 57-65.	2.8	27
162	Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 964-968.	7.1	66

#	Article	IF	CITATIONS
163	The effects of cholesterol on lateral diffusion and vertical fluctuations in lipid bilayers. An electron-electron double resonance (ELDOR) study. Biophysical Journal, 1987, 52, 1031-1038.	0.5	20
164	Interactions of nitrogen-14:nitrogen-15 stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry, 1987, 26, 3850-3855.	2.5	26
165	Application of rate equations to ELDOR and saturation recovery experiments on 14N:15N spin-label pairs. Journal of Magnetic Resonance, 1987, 74, 82-93.	0.5	5
166	Lateral diffusion of lipid probes in the surface membrane of human platelets. An electron-electron double resonance (ELDOR) study. Biophysical Journal, 1986, 50, 503-506.	0.5	10
167	Electron-electron double resonance (ELDOR) with a loop-gap resonator. Journal of Magnetic Resonance, 1985, 63, 142-150.	0.5	10