
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives. Journal of Pharmaceutical Analysis, 2022, 12, 446-452.	5.3	4
2	Fluorescent Ligand-Based Discovery of Small-Molecule Sulfonamide Agonists for GPR120. Frontiers in Chemistry, 2022, 10, 816014.	3.6	3
3	Constructing firefly luciferin bioluminescence probes for <i>in vivo</i> imaging. Organic and Biomolecular Chemistry, 2022, 20, 1360-1372.	2.8	14
4	Discovery of small-molecule fluorescent probes for C-Met. European Journal of Medicinal Chemistry, 2022, 230, 114114.	5.5	6
5	Au-24 as a potential thioredoxin reductase inhibitor in hepatocellular carcinoma cells. Pharmacological Research, 2022, 177, 106113.	7.1	3
6	Photophosphatidylserine Guides Natural Killer Cell Photoimmunotherapy <i>via</i> Tim-3. Journal of the American Chemical Society, 2022, 144, 3863-3874.	13.7	10
7	Discovery of alkene-conjugated luciferins for redshifted and improved bioluminescence imaging <i>in vitro</i> and <i>in vivo</i> . Organic and Biomolecular Chemistry, 2022, 20, 4224-4230.	2.8	1
8	Discovery of Environment-Sensitive Fluorescent Ligands of β-Adrenergic Receptors for Cell Imaging and NanoBRET Assay. Analytical Chemistry, 2022, 94, 7021-7028.	6.5	4
9	Design, synthesis and biological evaluation of new parbendazole derivatives for the treatment of HNSCC. European Journal of Medicinal Chemistry, 2022, 238, 114450.	5.5	1
10	Discovery of the Environment-Sensitive Near-Infrared (NIR) Fluorogenic Ligand for α1-Adrenergic Receptors Imaging In Vivo. Methods in Molecular Biology, 2021, 2274, 181-192.	0.9	0
11	Novel furimazine derivatives for nanoluciferase bioluminescence with various C-6 and C-8 substituents. Organic and Biomolecular Chemistry, 2021, 19, 7930-7936.	2.8	9
12	Phenotyping Aquatic Neurotoxicity Induced by the Artificial Sweetener Saccharin at Sublethal Concentration Levels. Journal of Agricultural and Food Chemistry, 2021, 69, 2041-2050.	5.2	5
13	Photoinduced Electron Transfer-Based Fluorescent Agonists for α1-Adrenergic Receptors Imaging. Analytical Chemistry, 2021, 93, 6034-6042.	6.5	4
14	NBD-Based Environment-Sensitive Fluorescent Probes for the Human Ether-a-Go-Go–Related Gene Potassium Channel. Frontiers in Molecular Biosciences, 2021, 8, 666605.	3.5	0
15	Bright chemiluminescent dioxetane probes for the detection of gaseous transmitter H2S. Bioorganic and Medicinal Chemistry Letters, 2021, 46, 128148.	2.2	6
16	Development of photocontrolled BRD4 PROTACs for tongue squamous cell carcinoma (TSCC). European Journal of Medicinal Chemistry, 2021, 222, 113608.	5.5	21
17	Polarity-based fluorescence probes: properties and applications. RSC Medicinal Chemistry, 2021, 12, 1826-1838.	3.9	26
18	Visualization-Based Discovery of Vanin-1 Inhibitors for Colitis. Frontiers in Chemistry, 2021, 9, 809495.	3.6	0

#	Article	IF	CITATIONS
19	Zebrafish Behavioral Phenomics Links Artificial Sweetener Aspartame to Behavioral Toxicity and Neurotransmitter Homeostasis. Journal of Agricultural and Food Chemistry, 2021, 69, 15393-15402.	5.2	2
20	Zebrafish neuro-behavioral profiles altered by acesulfame (ACE) within the range of "no observed effect concentrations (NOECs)― Chemosphere, 2020, 243, 125431.	8.2	17
21	Discovery of Turn-On Fluorescent Probes for Detecting PDEδ Protein in Living Cells and Tumor Slices. Analytical Chemistry, 2020, 92, 9516-9522.	6.5	6
22	Environment-sensitive fluorescent inhibitors of histone deacetylase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127128.	2.2	6
23	First small-molecule PROTACs for G protein-coupled receptors: inducing 1A-adrenergic receptor degradation. Acta Pharmaceutica Sinica B, 2020, 10, 1669-1679.	12.0	33
24	Novel NanoLuc-type substrates with various C-6 substitutions. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127085.	2.2	7
25	Optical Control of CRAC Channels Using Photoswitchable Azopyrazoles. Journal of the American Chemical Society, 2020, 142, 9460-9470.	13.7	35
26	How to Fluorescently Label the Potassium Channel: A Case in hERG. Current Medicinal Chemistry, 2020, 27, 3046-3054.	2.4	0
27	Discovery of Environment-Sensitive Fluorescent Agonists for α ₁ -Adrenergic Receptors. Analytical Chemistry, 2019, 91, 12173-12180.	6.5	12
28	Bioluminescent Probe for Monitoring Endogenous Fibroblast Activation Protein-Alpha. Analytical Chemistry, 2019, 91, 14873-14878.	6.5	21
29	Discovery of Small-Molecule Sulfonamide Fluorescent Probes for GPR120. Analytical Chemistry, 2019, 91, 15235-15239.	6.5	8
30	Discovery of Small-Molecule Inhibitors of the HSP90-Calcineurin-NFAT Pathway against Glioblastoma. Cell Chemical Biology, 2019, 26, 352-365.e7.	5.2	25
31	In vivo bioluminescence imaging of labile iron pools in a murine model of sepsis with a highly selective probe. Talanta, 2019, 203, 29-33.	5.5	18
32	Aggregation-Induced Emission: Lighting Up hERG Potassium Channel. Frontiers in Chemistry, 2019, 7, 54.	3.6	1
33	Discovery of Turn-On Fluorescent Probes for Detecting Bcl-2 Protein. Analytical Chemistry, 2019, 91, 5722-5728.	6.5	14
34	Astemizole-based turn-on fluorescent probes for imaging hERG potassium channel. MedChemComm, 2019, 10, 513-516.	3.4	5
35	A bioluminescent strategy for imaging palladium in living cells and animals with chemoselective probes based on luciferin-luciferase system. Talanta, 2019, 194, 925-929.	5.5	10
36	A specific and selective chemiluminescent probe for Pd2+ detection. Chinese Chemical Letters, 2019, 30, 63-66.	9.0	11

#	Article	IF	CITATIONS
37	Bioluminescent probe for detecting endogenous hypochlorite in living mice. Organic and Biomolecular Chemistry, 2018, 16, 645-651.	2.8	27
38	Visualization of mercury(<scp>ii</scp>) accumulation <i>in vivo</i> using bioluminescence imaging with a highly selective probe. Organic and Biomolecular Chemistry, 2018, 16, 2388-2392.	2.8	15
39	<i>In Vivo</i> Bioluminescence Imaging of Cobalt Accumulation in a Mouse Model. Analytical Chemistry, 2018, 90, 4946-4950.	6.5	28
40	A coelenterazine-type bioluminescent probe for nitroreductase imaging. Organic and Biomolecular Chemistry, 2018, 16, 146-151.	2.8	16
41	Identification of Al-2 Quorum Sensing Inhibitors in Vibrio harveyi Through Structure-Based Virtual Screening. Methods in Molecular Biology, 2018, 1673, 353-362.	0.9	7
42	Aminoluciferin 4-hydroxyphenyl amide enables bioluminescence detection of endogenous tyrosinase. Organic and Biomolecular Chemistry, 2018, 16, 9197-9203.	2.8	5
43	Novel caged luciferin derivatives can prolong bioluminescence imaging in vitro and in vivo. RSC Advances, 2018, 8, 19596-19599.	3.6	2
44	Storeâ€Operated Calcium Entry Mediated byÂORAlÂand STIM. , 2018, 8, 981-1002.		37
45	Bioluminescent Probe for Detection of Starvation-Induced Pantetheinase Upregulation. Analytical Chemistry, 2018, 90, 9545-9550.	6.5	15
46	Novel photoactivatable substrates for <i>Renilla</i> luciferase imaging <i>in vitro</i> and <i>in vivo</i> . Organic and Biomolecular Chemistry, 2018, 16, 4789-4792.	2.8	6
47	Bioluminescence probe for Î ³ -glutamyl transpeptidase detection in vivo. Bioorganic and Medicinal Chemistry, 2018, 26, 134-140.	3.0	17
48	Inhibiting Firefly Bioluminescence by Chalcones. Analytical Chemistry, 2017, 89, 6099-6105.	6.5	15
49	cybLuc: An Effective Aminoluciferin Derivative for Deep Bioluminescence Imaging. Analytical Chemistry, 2017, 89, 4808-4816.	6.5	51
50	Discovery of the First Environment-Sensitive Fluorescent Probe for GPR120 (FFA4) Imaging. ACS Medicinal Chemistry Letters, 2017, 8, 428-432.	2.8	11
51	Bioluminescent Probe for Tumor Hypoxia Detection via CYP450 Reductase in Living Animals. Analytical Chemistry, 2017, 89, 12488-12493.	6.5	27
52	Discovery of a Turn-On Fluorescent Probe for Myeloid Cell Leukemia-1 Protein. Analytical Chemistry, 2017, 89, 11173-11177.	6.5	15
53	New bioluminescent coelenterazine derivatives with various C-6 substitutions. Organic and Biomolecular Chemistry, 2017, 15, 7008-7018.	2.8	17
54	Prolonged bioluminescence imaging in living cells and mice using novel pro-substrates for <i>Renilla</i> luciferase. Organic and Biomolecular Chemistry, 2017, 15, 10238-10244.	2.8	13

#	Article	IF	CITATIONS
55	Environment-sensitive turn-on fluorescent probes for p53–MDM2 protein–protein interaction. MedChemComm, 2017, 8, 1668-1672.	3.4	10
56	Luminescence of coelenterazine derivatives with C-8 extended electronic conjugation. Chinese Chemical Letters, 2016, 27, 550-554.	9.0	18
57	Real-Time Bioluminescence Imaging of Nitroreductase in Mouse Model. Analytical Chemistry, 2016, 88, 5610-5614.	6.5	73
58	Store-operated CRAC channel inhibitors: opportunities and challenges. Future Medicinal Chemistry, 2016, 8, 817-832.	2.3	82
59	A novel coelenterate luciferin-based luminescent probe for selective and sensitive detection of thiophenols. Organic and Biomolecular Chemistry, 2016, 14, 10267-10274.	2.8	18
60	Discovery of Fluorescence Polarization Probe for the ELISA-Based Antagonist Screening of α ₁ -Adrenergic Receptors. ACS Medicinal Chemistry Letters, 2016, 7, 967-971.	2.8	10
61	Bioluminogenic Imaging of AminopeptidaseN In Vitro and In Vivo. Methods in Molecular Biology, 2016, 1461, 91-99.	0.9	1
62	Bioluminescent Probe for Detecting Mercury(II) in Living Mice. Analytical Chemistry, 2016, 88, 7462-7465.	6.5	25
63	A novel NBD-based pH "on–off―fluorescent probe equipped with the N-phenylpiperazine group for lysosome imaging. RSC Advances, 2016, 6, 102773-102777.	3.6	12
64	Quenching the firefly bioluminescence by various ions. Photochemical and Photobiological Sciences, 2016, 15, 244-249.	2.9	9
65	Visualization of α1-adrenergic receptors with phenylpiperazine-based fluorescent probes. Science China Chemistry, 2016, 59, 624-628.	8.2	5
66	Astemizole Derivatives as Fluorescent Probes for hERG Potassium Channel Imaging. ACS Medicinal Chemistry Letters, 2016, 7, 245-249.	2.8	11
67	Discovery of the First Environment-Sensitive Near-Infrared (NIR) Fluorogenic Ligand for α ₁ -Adrenergic Receptors Imaging in Vivo. Journal of Medicinal Chemistry, 2016, 59, 2151-2162.	6.4	28
68	Lighting up bioluminescence with coelenterazine: strategies and applications. Photochemical and Photobiological Sciences, 2016, 15, 466-480.	2.9	61
69	Discovery of naphthalimide conjugates as fluorescent probes for α 1 -adrenoceptors. Chinese Chemical Letters, 2016, 27, 185-189.	9.0	6
70	Environment-Sensitive Fluorescent Probe for the Human Ether-a-go-go-Related Gene Potassium Channel. Analytical Chemistry, 2016, 88, 1511-1515.	6.5	31
71	A bestatin-based fluorescent probe for aminopeptidase N cell imaging. Chinese Chemical Letters, 2015, 26, 513-516.	9.0	12
72	Discovery of novel FFA4 (GPR120) receptor agonists with β-arrestin2-biased characteristics. Future Medicinal Chemistry, 2015, 7, 2429-2437.	2.3	21

#	Article	IF	CITATIONS
73	Fluorogenic Probe for the Human Ether-a-Go-Go-Related Gene Potassium Channel Imaging. Analytical Chemistry, 2015, 87, 2550-2554.	6.5	23
74	A Fluorescent Probe for Imaging p53– <scp>MDM</scp> 2 Protein–Protein Interaction. Chemical Biology and Drug Design, 2015, 85, 411-417.	3.2	15
75	Discovery of a series of 2-phenylnaphthalenes as firefly luciferase inhibitors. RSC Advances, 2015, 5, 63450-63457.	3.6	7
76	BioLeT: A new design strategy for functional bioluminogenic probes. Chinese Chemical Letters, 2015, 26, 919-921.	9.0	5
77	Discovery of Quinazoline-Based Fluorescent Probes to α ₁ -Adrenergic Receptors. ACS Medicinal Chemistry Letters, 2015, 6, 502-506.	2.8	23
78	Novel intramolecular photoinduced electron transfer-based probe for the Human Ether-a-go-go-Related Gene (hERG) potassium channel. Analyst, The, 2015, 140, 8101-8108.	3.5	4
79	Biological characteristics and agonists of GPR120 (FFAR4) receptor: the present status of research. Future Medicinal Chemistry, 2015, 7, 1457-1468.	2.3	21
80	Synthesis and biological evaluation of a series of aryl triazoles as firefly luciferase inhibitors. MedChemComm, 2015, 6, 418-424.	3.4	15
81	Design, synthesis and biological evaluation of naphthalimidebased fluorescent probes for α1-adrenergic receptors. Drug Discoveries and Therapeutics, 2014, 8, 11-17.	1.5	5
82	Design, synthesis and biological evaluation of 4-chromanone derivatives as IKr inhibitors. Drug Discoveries and Therapeutics, 2014, 8, 76-83.	1.5	4
83	Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules. Analyst, The, 2014, 139, 2641-2649.	3.5	48
84	Toward Fluorescent Probes for G-Protein-Coupled Receptors (GPCRs). Journal of Medicinal Chemistry, 2014, 57, 8187-8203.	6.4	49
85	Discovery of Bioluminogenic Probes for Aminopeptidase N Imaging. Analytical Chemistry, 2014, 86, 2747-2751.	6.5	49
86	Bioluminescent Probe for Hydrogen Peroxide Imaging in Vitro and in Vivo. Analytical Chemistry, 2014, 86, 9800-9806.	6.5	83
87	Strategies in the Design of Smallâ€Molecule Fluorescent Probes for Peptidases. Medicinal Research Reviews, 2014, 34, 1217-1241.	10.5	26
88	Bifunctional fluorescent probes for hydrogen peroxide and diols based on a 1,8-naphthalimide fluorophore. Science China Chemistry, 2013, 56, 1440-1445.	8.2	8
89	Fluorescence triggered by ligand-protein hydrophobic interaction. Science China Chemistry, 2013, 56, 1667-1670.	8.2	8
90	The first ratiometric fluorescent probes for aminopeptidase N cell imaging. Organic and Biomolecular Chemistry, 2013, 11, 378-382.	2.8	51

#	Article	IF	CITATIONS
91	Lighting up GPCRs with a Fluorescent Multiprobe Dubbed "Snifit― ChemBioChem, 2013, 14, 184-186.	2.6	4
92	How to Improve Docking Accuracy of AutoDock4.2: A Case Study Using Different Electrostatic Potentials. Journal of Chemical Information and Modeling, 2013, 53, 188-200.	5.4	97
93	A novel pH "off–on―fluorescent probe for lysosome imaging. RSC Advances, 2013, 3, 13412.	3.6	31
94	A novel hydrazino-substituted naphthalimide-based fluorogenic probe for tert-butoxy radicals. Chemical Communications, 2013, 49, 6295.	4.1	28
95	Cage the firefly luciferin! – a strategy for developing bioluminescent probes. Chemical Society Reviews, 2013, 42, 662-676.	38.1	172
96	Coumarin-based Fluorescent Probes for H2S Detection. Journal of Fluorescence, 2013, 23, 181-186.	2.5	62
97	Boronate Can Be the Fluorogenic Switch for the Detection of Hydrogen Peroxide. Current Medicinal Chemistry, 2012, 19, 3622-3634.	2.4	8
98	Update on the Slow Delayed Rectifier Potassium Current (IKs): Role in Modulating Cardiac Function. Current Medicinal Chemistry, 2012, 19, 1405-1420.	2.4	10
99	Design of OFF/ON fluorescent thiol probes based on coumarin fluorophore. Science China Chemistry, 2012, 55, 1776-1780.	8.2	7
100	The first ratiometric fluorescent probe for aminopeptidase N. Analytical Methods, 2012, 4, 2661.	2.7	26
101	Naphthalimide-based fluorescent off/on probes for the detection of thiols. Tetrahedron, 2012, 68, 5363-5367.	1.9	36
102	A benzothiazole-based fluorescent probe for thiol bioimaging. Tetrahedron Letters, 2012, 53, 2332-2335.	1.4	37
103	Advances and Perspectives in Cell-Specific Aptamers. Current Pharmaceutical Design, 2011, 17, 80-91.	1.9	21
104	How to Generate Reliable and Predictive CoMFA Models. Current Medicinal Chemistry, 2011, 18, 923-930.	2.4	30
105	Alkaloids and Flavonoids as α1-Adrenergic Receptor Antagonists. Current Medicinal Chemistry, 2011, 18, 4923-4932.	2.4	19
106	Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16212-16216.	7.1	93
107	Aptamer-Based Carbohydrate Recognition. Current Pharmaceutical Design, 2010, 16, 2269-2278.	1.9	52
108	Structureâ€Based Virtual Screening and Electrophysiological Evaluation of New Chemotypes of K _v 1.5 Channel Blockers. ChemMedChem, 2010, 5, 1353-1358.	3.2	8

#	Article	IF	CITATIONS
109	A fluorescent hydrogen peroxide probe based on a â€~click' modified coumarin fluorophore. Tetrahedron Letters, 2010, 51, 1152-1154.	1.4	59
110	Modeling the Interactions Between α1-Adrenergic Receptors and Their Antagonists. Current Computer-Aided Drug Design, 2010, 6, 165-178.	1.2	12
111	The Interactions Between hERG Potassium Channel and Blockers. Current Topics in Medicinal Chemistry, 2009, 9, 330-338.	2.1	18
112	Pharmacophore Mapping for Kv1.5 Potassium Channel Blockers. QSAR and Combinatorial Science, 2009, 28, 59-71.	1.4	12
113	Molecular hybridization, synthesis, and biological evaluation of novel chroman IKr and IKs dual blockers. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1477-1480.	2.2	11
114	Drug Discoveries Towards Kv1.5 Potassium Channel. Current Topics in Medicinal Chemistry, 2009, 9, 339-347.	2.1	3
115	Computational studies of the binding site of α1A-adrenoceptor antagonists. Journal of Molecular Modeling, 2008, 14, 957-966.	1.8	26
116	Modeling the binding modes of Kv1.5 potassium channel and blockers. Journal of Molecular Graphics and Modelling, 2008, 27, 178-187.	2.4	22
117	Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron Letters, 2008, 49, 3045-3048.	1.4	74
118	Selecting Aptamers for a Glycoprotein through the Incorporation of the Boronic Acid Moiety. Journal of the American Chemical Society, 2008, 130, 12636-12638.	13.7	126
119	Strategies for atrial fibrillation therapy: focusing on <i>I</i> _{Kur} potassium channel. Expert Opinion on Therapeutic Patents, 2007, 17, 1443-1456.	5.0	13
120	A novel structure-based virtual screening model for the hERG channel blockers. Biochemical and Biophysical Research Communications, 2007, 355, 889-894.	2.1	55
121	Characterization of binding site of closed-state KCNQ1 potassium channel by homology modeling, molecular docking, and pharmacophore identification. Biochemical and Biophysical Research Communications, 2005, 332, 677-687.	2.1	22
122	The pharmacophore hypotheses of IKr potassium channel blockers: novel class III antiarrhythmic agents. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4771-4777.	2.2	46
123	Self-organizing molecular field analysis on α1a-adrenoceptor dihydropyridine antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 3945-3951.	3.0	20