John David Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743389/publications.pdf

Version: 2024-02-01

48 papers

4,585 citations

34 h-index 214800 47 g-index

51 all docs

51 docs citations

51 times ranked

5622 citing authors

#	Article	IF	CITATIONS
1	Connections and Regulation of the Human Estrogen Receptor. Science, 2002, 296, 1642-1644.	12.6	518
2	Dissection of the LXXLL Nuclear Receptor-Coactivator Interaction Motif Using Combinatorial Peptide Libraries: Discovery of Peptide Antagonists of Estrogen Receptors \hat{l}_{\pm} and \hat{l}_{\pm} . Molecular and Cellular Biology, 1999, 19, 8226-8239.	2.3	349
3	The Nuclear Corepressors NCoR and SMRT Are Key Regulators of Both Ligand- and 8-Bromo-Cyclic AMP-Dependent Transcriptional Activity of the Human Progesterone Receptor. Molecular and Cellular Biology, 1998, 18, 1369-1378.	2.3	242
4	Structural Basis for an Unexpected Mode of SERM-Mediated ER Antagonism. Molecular Cell, 2005, 18, 413-424.	9.7	225
5	Comparative Analyses of Mechanistic Differences Among Antiestrogens 1. Endocrinology, 1999, 140, 5828-5840.	2.8	214
6	Identification of a New Subclass of Alu DNA Repeats Which Can Function as Estrogen Receptor-dependent Transcriptional Enhancers. Journal of Biological Chemistry, 1995, 270, 22777-22782.	3.4	205
7	Modulation of Estrogen Receptor-α Transcriptional Activity by the Coactivator PGC-1. Journal of Biological Chemistry, 2000, 275, 16302-16308.	3.4	193
8	The Homeodomain Protein HOXB13 Regulates the Cellular Response to Androgens. Molecular Cell, 2009, 36, 405-416.	9.7	183
9	Development of a Small-Molecule Serum- and Glucocorticoid-Regulated Kinase-1 Antagonist and Its Evaluation as a Prostate Cancer Therapeutic. Cancer Research, 2008, 68, 7475-7483.	0.9	182
10	Bisphenol A affects androgen receptor function via multiple mechanisms. Chemico-Biological Interactions, 2013, 203, 556-564.	4.0	154
11	Oral Selective Estrogen Receptor Downregulators (SERDs), a Breakthrough Endocrine Therapy for Breast Cancer. Journal of Medicinal Chemistry, 2015, 58, 4883-4887.	6.4	147
12	Smallâ€Moleculeâ€Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie - International Edition, 2015, 54, 9659-9662.	13.8	146
13	Efficacy of SERD/SERM Hybrid-CDK4/6 Inhibitor Combinations in Models of Endocrine Therapy–Resistant Breast Cancer. Clinical Cancer Research, 2015, 21, 5121-5130.	7.0	126
14	Estrogenic Activity of a Dieldrin/Toxaphene Mixture in the Mouse Uterus, MCF-7 Human Breast Cancer Cells, and Yeast-Based Estrogen Receptor Assays: No Apparent Synergism*. Endocrinology, 1997, 138, 1520-1527.	2.8	113
15	Definition of the Molecular and Cellular Mechanisms Underlying the Tissue-selective Agonist/Antagonist Activities of Selective Estrogen Receptor Modulators. Endocrine Reviews, 2002, 57, 295-316.	6.7	111
16	BRCA1 expression is not directly responsive to estrogen. Oncogene, 1997, 14, 115-121.	5.9	109
17	Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer. Journal of Medicinal Chemistry, 2018, 61, 2837-2864.	6.4	103
18	Identification of a Negative Regulatory Surface within Estrogen Receptor α Provides Evidence in Support of a Role for Corepressors in Regulating Cellular Responses to Agonists and Antagonists. Molecular Endocrinology, 2002, 16, 1778-1792.	3.7	97

#	Article	IF	CITATIONS
19	Identification of a Third Autonomous Activation Domain within the Human Estrogen Receptor. Molecular Endocrinology, 1997, 11, 747-754.	3.7	90
20	Enhancement of Estrogen Receptor Transcriptional Activity by the Coactivator GRIP-1 Highlights the Role of Activation Function 2 in Determining Estrogen Receptor Pharmacology. Journal of Biological Chemistry, 1998, 273, 6679-6688.	3.4	90
21	Obesity, Cholesterol Metabolism, and Breast Cancer Pathogenesis. Cancer Research, 2014, 74, 4976-4982.	0.9	86
22	Discovery of Selective Estrogen Receptor Covalent Antagonists for the Treatment of ERαWT and ERαMUT Breast Cancer. Cancer Discovery, 2018, 8, 1176-1193.	9.4	81
23	A Negative Coregulator for the Human ER. Molecular Endocrinology, 2002, 16, 459-468.	3.7	79
24	Induction of Krüppel-Like Factor 5 Expression by Androgens Results in Increased CXCR4-Dependent Migration of Prostate Cancer Cells <i>in Vitro</i> . Molecular Endocrinology, 2009, 23, 1385-1396.	3.7	62
25	Elucidation of the molecular mechanism of action of selective estrogen receptor modulators. American Journal of Cardiology, 2002, 90, F35-F43.	1.6	48
26	Differential Presentation of Protein Interaction Surfaces on the Androgen Receptor Defines the Pharmacological Actions of Bound Ligands. Chemistry and Biology, 2009, 16, 452-460.	6.0	47
27	MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Hormones and Cancer, 2017, 8, 69-77.	4.9	45
28	Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12178-12183.	7.1	43
29	The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer. Cell Reports, 2019, 29, 889-903.e10.	6.4	40
30	Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. Journal of Clinical Investigation, 2017, 127, 2326-2338.	8.2	40
31	Structure-Function Relationships of the Complement Regulatory Protein, CD59. Blood Cells, Molecules, and Diseases, 1996, 22, 281-296.	1.4	39
32	HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer. Prostate, 2019, 79, 414-424.	2.3	39
33	Development of peptide antagonists that target estrogen receptor–cofactor interactions. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 327-335.	2.5	36
34	Discovery of an Acrylic Acid Based Tetrahydroisoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer. Journal of Medicinal Chemistry, 2017, 60, 2790-2818.	6.4	36
35	Capitalizing on the Complexities of Estrogen Receptor Pharmacology in the Quest for the Perfect SERM. Annals of the New York Academy of Sciences, 2001, 949, 16-35.	3.8	34
36	G1T48, an oral selective estrogen receptor degrader, and the CDK4/6 inhibitor lerociclib inhibit tumor growth in animal models of endocrine-resistant breast cancer. Breast Cancer Research and Treatment, 2020, 180, 635-646.	2.5	32

#	Article	IF	CITATIONS
37	Pharmacokinetic and pharmacodynamic analysis of fulvestrant in preclinical models of breast cancer to assess the importance of its estrogen receptor-l± degrader activity in antitumor efficacy. Breast Cancer Research and Treatment, 2020, 179, 67-77.	2.5	30
38	Identification of a Third Autonomous Activation Domain within the Human Estrogen Receptor. Molecular Endocrinology, 1997, 11, 747-754.	3.7	30
39	The Dysregulated Pharmacology of Clinically Relevant <i>ESR1</i> Mutants is Normalized by Ligand-activated WT Receptor. Molecular Cancer Therapeutics, 2020, 19, 1395-1405.	4.1	26
40	CDK4/6 Therapeutic Intervention and Viable Alternative to Taxanes in CRPC. Molecular Cancer Research, 2017, 15, 660-669.	3.4	22
41	Next-Generation Endocrine Therapies for Breast Cancer. Journal of Clinical Oncology, 2021, 39, 1383-1388.	1.6	19
42	Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nature Chemical Biology, 2016, 12, 795-801.	8.0	15
43	Application of Random Peptide Phage Display to the Study of Nuclear Hormone Receptors. Methods in Enzymology, 2003, 364, 118-142.	1.0	14
44	Single-step purification of full-length human androgen receptor. Nuclear Receptor Signaling, 2005, 3, nrs.03001.	1.0	14
45	Targeting mutant estrogen receptors. ELife, 2019, 8, .	6.0	6
46	Neomorphic ERl^\pm Mutations Drive Progression in Breast Cancer and Present a Challenge for New Drug Discovery. Cancer Cell, 2018, 33, 153-155.	16.8	4
47	A New Chemotype of Chemically Tractable Nonsteroidal Estrogens Based on a Thieno[2,3- <i>d</i>)pyrimidine Core. ACS Medicinal Chemistry Letters, 2022, 13, 1151-1158.	2.8	1
48	Defining the molecular pharmacology of disease relevant estrogen receptor mutations for effective therapeutic targeting in breast cancer. FASEB Journal, 2019, 33, 815.4.	0.5	0