
Ran Attias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7433835/publications.pdf Version: 2024-02-01

Ρανι Δττίας

#	Article	IF	CITATIONS
1	Determination of Average Coulombic Efficiency for Rechargeable Magnesium Metal Anodes in Prospective Electrolyte Solutions. ACS Applied Materials & Interfaces, 2022, 14, 30952-30961.	8.0	6
2	Changes in the interfacial charge-transfer resistance of Mg metal electrodes, measured by dynamic electrochemical impedance spectroscopy. Electrochemistry Communications, 2021, 124, 106952.	4.7	21
3	Critical Review on the Unique Interactions and Electroanalytical Challenges Related to Cathodes ― Solutions Interfaces in Nonâ€Aqueous Mg Battery Prototypes. ChemElectroChem, 2021, 8, 3229-3238.	3.4	2
4	Multifold Electrochemical Protons and Zinc Ion Storage Behavior in Copper Vanadate Cathodes. ACS Applied Energy Materials, 2021, 4, 10197-10202.	5.1	4
5	Horizons for Modern Electrochemistry Related to Energy Storage and Conversion, a Review. Israel Journal of Chemistry, 2021, 61, 11-25.	2.3	6
6	Evaluation of Mg[B(HFIP) ₄] ₂ -Based Electrolyte Solutions for Rechargeable Mg Batteries. ACS Applied Materials & Interfaces, 2021, 13, 54894-54905.	8.0	15
7	How solution chemistry affects the electrochemical behavior of cathodes for Mg batteries, a classical electroanalytical study. Electrochimica Acta, 2020, 334, 135614.	5.2	11
8	Anomalous Sodium Storage Behavior in Al/F Dualâ€Doped P2â€Type Sodium Manganese Oxide Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002205.	19.5	36
9	Boosting Tunnel-Type Manganese Oxide Cathodes by Lithium Nitrate for Practical Aqueous Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10744-10751.	5.1	4
10	Vacancyâ€Driven High Rate Capabilities in Calciumâ€Doped Na _{0.4} MnO ₂ Cathodes for Aqueous Sodiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002077.	19.5	37
11	The Role of Surface Adsorbed Cl [–] Complexes in Rechargeable Magnesium Batteries. ACS Catalysis, 2020, 10, 7773-7784.	11.2	35
12	Selected future tasks in electrochemical research related to advanced power sources. Journal of Solid State Electrochemistry, 2020, 24, 2027-2029.	2.5	1
13	The Sodium Storage Mechanism in Tunnelâ€Type Na _{0.44} MnO ₂ Cathodes and the Way to Ensure Their Durable Operation. Advanced Energy Materials, 2020, 10, 2000564.	19.5	51
14	Electrolyte Solutions for "Beyond Li-Ion Batteries― Li-S, Li-O ₂ , and Mg Batteries. Electrochemical Society Interface, 2019, 28, 71-77.	0.4	2
15	Modulation, Characterization, and Engineering of Advanced Materials for Electrochemical Energy Storage Applications: MoO3/V2O5 Bilayer Model System. Journal of Physical Chemistry C, 2019, 123, 16577-16587.	3.1	5
16	Anode-Electrolyte Interfaces in Secondary Magnesium Batteries. Joule, 2019, 3, 27-52.	24.0	275
17	Metal–Sulfur Batteries: Overview and Research Methods. ACS Energy Letters, 2019, 4, 436-446.	17.4	108
18	Anion Effects on Cathode Electrochemical Activity in Rechargeable Magnesium Batteries: A Case Study of V ₂ O ₅ . ACS Energy Letters, 2019, 4, 209-214.	17.4	45

Ran Attias

#	Article	IF	CITATIONS
19	On the Feasibility of Practical Mg–S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 36910-36917.	8.0	51
20	Solvent Effects on the Reversible Intercalation of Magnesiumâ€ions into V ₂ O ₅ Electrodes. ChemElectroChem, 2018, 5, 3514-3524.	3.4	46
21	Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2017, 5, 12653-12672.	10.3	1,152
22	Solid state synthesis of Li0.33MnO2 as positive electrode material for highly stable 2V aqueous hybrid supercapacitors:. Electrochimica Acta, 2017, 254, 155-164.	5.2	9
23	Asymmetric Supercapacitors Using Chemically Prepared MnO ₂ as Positive Electrode Materials. Journal of the Electrochemical Society, 2017, 164, A2231-A2237.	2.9	48