Kai-Uwe Schmidt

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf|7433768/publications.pdf
Version: 2024-02-01

Quadratic and symmetric bilinear forms over finite fields and their association schemes. Algebraic
Combinatorics, 2020, 3, 161-189.

2 Highly nonlinear functions over finite fields. Finite Fields and Their Applications, 2020, 63, 101640.
$1.0 \quad 1$

Low-degree planar polynomials over finite fields of characteristic two. Journal of Algebra, 2019, 535,
541-555.

Sequence Pairs With Asymptotically Optimal Aperiodic Correlation. IEEE Transactions on Information
Theory, 2019, 65, 5233-5238.
Sequence Pairs With Asymptotically Optimal Aperiodic Correlation. IEEE Transactions on Information
Theory, 2019, 65, 5233-5238.
$2.4 \quad 1$

5 Asymptotically optimal Boolean functions. Journal of Combinatorial Theory - Series A, 2019, 164, 50-59.
$\begin{array}{ll}0.8 & 7\end{array}$

6 On the number of inequivalent Gabidulin codes. Designs, Codes, and Cryptography, 2018, 86, 1973-1982.
1.6

9
$7 \quad$ Hermitian rank distance codes. Designs, Codes, and Cryptography, 2018, 86, 1469-1481.
1.6

11

8 Merit factors of polynomials derived from difference sets. Journal of Combinatorial Theory-Series A,

2017, 145, 340-363.
$0.8 \quad 9$
$9 \quad$ Lq Norms of Fekete and Related Polynomials. Canadian Journal of Mathematics, 2017, 69, 807-825.
0.6

5

10 Barker sequences of odd length. Designs, Codes, and Cryptography, 2016, 80, 409-414.
1.6

6

11 Exceptional planar polynomials. Designs, Codes, and Cryptography, 2016, 78, 605-613.
1.6

9

12 Nonlinearity measures of random Boolean functions. Cryptography and Communications, 2016, 8, 637-645.

13 Sequences with small correlation. Designs, Codes, and Cryptography, 2016, 78, 237-267. 16

14 Symmetric bilinear forms over finite fields with applications to coding theory. Journal of Algebraic Combinatorics, 2015, 42, 635-670.
0.8

24

15 Three-Phase Barker Arrays. Journal of Combinatorial Designs, 2015, 23, 45-59.
$0.6 \quad 1$

16 Highly nonlinear functions. Designs, Codes, and Cryptography, 2015, 74, 665-672.
1.6

The peak sidelobe level of random binary sequences. Bulletin of the London Mathematical Society,
2014, 46, 643-652.
0.8

10

Planar functions over fields of characteristic two. Journal of Algebraic Combinatorics, 2014, 40,
503-526.

19 Advances in the merit factor problem for binary sequences. Journal of Combinatorial Theory - Series
A, 2013, 120, 882-906.

On a problem due to Littlewood concerning polynomials with unimodular coefficients. Journal of Fourier Analysis and Applications, 2013, 19, 457-466.
20

Binary Sequences With Small Peak Sidelobe Level. IEEE Transactions on Information Theory, 2012, 58, 2512-2515.
2.4

TheL4norm of Littlewood polynomials derived from the Jacobi symbol. Pacific Journal of Mathematics, 2012, 257, 395-418.

23	Sequence Families With Low Correlation Derived From Multiplicative and Additive Characters. IEEE Transactions on Information Theory, 2011, 57, 2291-2294.	2.4	23
24	On the correlation distribution of Delsarteâ€"Goethals sequences. Designs, Codes, and Cryptography, 2011, 59, 333-347.	1.6	3
25	The merit factor of binary arrays derived from the quadratic character. Advances in Mathematics of Communications, 2011, 5, 589-607.	0.7	1
26	Symmetric bilinear forms over finite fields of even characteristic. Journal of Combinatorial Theory Series A, 2010, 117, 1011-1026.	0.8	18
27	Bounds on the PMEPR of Translates of Binary Codes. IEEE Communications Letters, 2010, 14, 1059-1061.	4.1	2
28	Quaternary Constant-Amplitude Codes for Multicode CDMA. IEEE Transactions on Information Theory, 2009, 55, 1824-1832.	2.4	54
29	$\$\{B B Z\} _4 \$$-Valued Quadratic Forms and Quaternary Sequence Families. IEEE Transactions on Information Theory, 2009, 55, 5803-5810.	2.4	29
30	Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3, 135-156.	0.7	8
31	On the peak-to-mean envelope power ratio of phase-shifted binary codes. IEEE Transactions on Communications, 2008, 56, 1816-1823.	7.8	9

