
David J Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7433395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The next "sweet―spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection. Mass Spectrometry Reviews, 2023, 42, 822-843.	5.4	10
2	Long-term mortality in asymptomatic patients with stable ischemic heart disease undergoing percutaneous coronary intervention. American Heart Journal, 2022, 244, 77-85.	2.7	2
3	Impact of Magnesium on Oxytocin Receptor Function. Pharmaceutics, 2022, 14, 1105.	4.5	7
4	Characterization of core fucosylation via sequential enzymatic treatments of intact glycopeptides and mass spectrometry analysis. Nature Communications, 2022, 13, .	12.8	14
5	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	16.8	189
6	Abstract 324: Unbiased proteomic and phosphoproteomic analysis identifies response signatures and novel susceptibilities after combined MEK and mTOR inhibition in BRAFV600Emutant glioma. , 2021, , .		0
7	Defining candidate mRNA and protein EV biomarkers to discriminate ccRCC and pRCC from non-malignant renal cells in vitro. Medical Oncology, 2021, 38, 105.	2.5	5
8	Highâ€Throughput Analyses of Glycans, Glycosites, and Intact Glycopeptides Using C4â€and C18/MAXâ€Tips and Liquid Handling System. Current Protocols, 2021, 1, e186.	2.9	7
9	Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell, 2021, 184, 5031-5052.e26.	28.9	236
10	Unbiased Proteomic and Phosphoproteomic Analysis Identifies Response Signatures and Novel Susceptibilities After Combined MEK and mTOR Inhibition in BRAFV600E Mutant Glioma. Molecular and Cellular Proteomics, 2021, 20, 100123.	3.8	5
11	Abstract IA-003: Proteogenomic characterizations of pancreatic ductal adenocarcinoma. , 2021, , .		0
12	Glycans, Glycosite, and Intact Glycopeptide Analysis of N-Linked Glycoproteins Using Liquid Handling Systems. Analytical Chemistry, 2020, 92, 1680-1686.	6.5	27
13	Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nature Communications, 2020, 11, 6139.	12.8	72
14	Proteomic approaches for characterizing renal cell carcinoma. Clinical Proteomics, 2020, 17, 28.	2.1	8
15	High-dimensional Cytometry (ExCYT) and Mass Spectrometry of Myeloid Infiltrate in Clinically Localized Clear Cell Renal Cell Carcinoma Identifies Novel Potential Myeloid Targets for Immunotherapy. Molecular and Cellular Proteomics, 2020, 19, 1850-1859.	3.8	2
16	Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Reports, 2020, 33, 108276.	6.4	83
17	Impact of Increased FUT8 Expression on the Extracellular Vesicle Proteome in Prostate Cancer Cells. Journal of Proteome Research, 2020, 19, 2195-2205.	3.7	28
18	Protein Modifications Critical for Myonectin/Erythroferrone Secretion and Oligomer Assembly. Biochemistry, 2020, 59, 2684-2697.	2.5	8

DAVID J CLARK

#	Article	IF	CITATIONS
19	Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry. Analytical Chemistry, 2020, 92, 4217-4225.	6.5	23
20	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	28.9	430
21	Simple Tip-Based Sample Processing Method for Urinary Proteomic Analysis. Analytical Chemistry, 2019, 91, 5517-5522.	6.5	18
22	N-Linked Glycosylation-Dependent and -Independent Mechanisms Regulating CTRP12 Cleavage, Secretion, and Stability. Biochemistry, 2019, 58, 727-741.	2.5	1
23	Evaluation of NCI-7 Cell Line Panel as a Reference Material for Clinical Proteomics. Journal of Proteome Research, 2018, 17, 2205-2215.	3.7	17
24	Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry. Nature Protocols, 2018, 13, 1632-1661.	12.0	377
25	Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides. Analytical Chemistry, 2018, 90, 8065-8071.	6.5	81
26	Understanding the Surgical Margin. Oral and Maxillofacial Surgery Clinics of North America, 2017, 29, 245-258.	1.0	23
27	Site-Specific Fucosylation Analysis Identifying Glycoproteins Associated with Aggressive Prostate Cancer Cell Lines Using Tandem Affinity Enrichments of Intact Glycopeptides Followed by Mass Spectrometry. Analytical Chemistry, 2017, 89, 7623-7630.	6.5	65
28	A piRNA-like Small RNA Induces Chemoresistance to Cisplatin-Based Therapy by Inhibiting Apoptosis in Lung Squamous Cell Carcinoma. Molecular Therapy - Nucleic Acids, 2017, 6, 269-278.	5.1	37
29	A phosphorylation-wide sncRNA screen reveals Protein Functional Effector sncRNAs (pfeRNAs) in human lung somatic cells. Cancer Letters, 2017, 396, 85-93.	7.2	5
30	Overexpression of Exportin-5 Overrides the Inhibitory Effect of miRNAs Regulation Control and Stabilize Proteins via Posttranslation Modifications in Prostate Cancer. Neoplasia, 2017, 19, 817-829.	5.3	8
31	High-throughput analysis of N-glycans using AutoTip via glycoprotein immobilization. Scientific Reports, 2017, 7, 10216.	3.3	19
32	Glycoproteomic Approach Identifies KRAS as a Positive Regulator of CREG1 in Non-small Cell Lung Cancer Cells. Theranostics, 2016, 6, 65-77.	10.0	15
33	Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. Journal of Proteomics, 2016, 133, 161-169.	2.4	112
34	A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nature Communications, 2015, 6, 7316.	12.8	88
35	Molecular margin of surgical resections—Where do we go from here?. Cancer, 2015, 121, 1914-1916.	4.1	26
36	Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis. Analytical Chemistry, 2015, 87, 10462-10469.	6.5	66

DAVID J CLARK

#	Article	IF	CITATIONS
37	FGF23 Is Endogenously Phosphorylated in Bone Cells. Journal of Bone and Mineral Research, 2015, 30, 449-454.	2.8	30
38	Ebp1 activates podoplanin expression and contributes to oral tumorigenesis. Oncogene, 2014, 33, 3839-3850.	5.9	37
39	Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochemical Journal, 2014, 462, 77-88.	3.7	102
40	Novel dimensions of piRNAs in cancer. Cancer Letters, 2013, 336, 46-52.	7.2	107
41	Plasma Membrane Proteomics of Tumor Spheres Identify CD166 as a Novel Marker for Cancer Stem-like Cells in Head and Neck Squamous Cell Carcinoma. Molecular and Cellular Proteomics, 2013, 12, 3271-3284.	3.8	74
42	Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer. Proteomes, 2013, 1, 87-108.	3.5	44
43	Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets. PLoS ONE, 2013, 8, e66462.	2.5	18
44	Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins. Disease Markers, 2012, 33, 1-10.	1.3	50
45	Cancer biomarker discovery: lectin-based strategies targeting glycoproteins. Disease Markers, 2012, 33, 1-10.	1.3	18
46	Characterizing the Escherichia coli O157:H7 Proteome Including Protein Associations with Higher Order Assemblies. PLoS ONE, 2011, 6, e26554.	2.5	20
47	Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiology, 2010, 10, 30.	3.3	35
48	Using chemical derivatization and mass spectrometric analysis to characterize the post-translationally modified Staphylococcus aureus surface protein G. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1394-1404.	2.3	10
49	Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology (United Kingdom), 2009, 155, 498-512.	1.8	77
50	The <i>Shigella dysenteriae</i> serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics, 2009, 9, 5029-5045.	2.2	41
51	Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome. Proteome Science, 2009, 7, 22.	1.7	28
52	Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes. Proteome Science, 2009, 7, 5.	1.7	26
53	Characterizing the dynamic nature of the <i>Yersinia pestis</i> periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics, 2008, 8, 1442-1458.	2.2	32
54	Widespread Occurrence of Non-Enzymatic Deamidations of Asparagine Residues in Yersinia pestis Proteins Resulting from Alkaline pH Membrane Extraction Conditions. The Open Proteomics Journal, 2008, 1, 106-115.	0.4	5

#	Article	IF	CITATIONS
55	Proteomic profiling of cell envelope-associated proteins fromStaphylococcus aureus. Proteomics, 2006, 6, 1530-1549.	2.2	102
56	Comparative proteomic analysis ofStaphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics, 2006, 6, 4246-4258.	2.2	75