Maria L Kireeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7433136/publications.pdf

Version: 2024-02-01

147801 149698 4,633 57 31 56 h-index citations g-index papers 58 58 58 3721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BNT162b2, mRNA-1273, and Sputnik V Vaccines Induce Comparable Immune Responses on a Par With Severe Course of COVID-19. Frontiers in Immunology, 2022, 13, 797918.	4.8	1
2	Dual-Antigen System Allows Elimination of False Positive Results in COVID-19 Serological Testing. Diagnostics, 2021, 11, 102.	2.6	8
3	Expression of SARS-CoV-2 surface glycoprotein fragment 319–640 in E. coli, and its refolding and purification. Protein Expression and Purification, 2021, 183, 105861.	1.3	25
4	lgG Antibodies Develop to Spike but Not to the Nucleocapsid Viral Protein in Many Asymptomatic and Light COVID-19 Cases. Viruses, 2021, 13, 1945.	3.3	16
5	NusG controls transcription pausing and RNA polymerase translocation throughout the <i>Bacillus subtilis</i> genome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21628-21636.	7.1	38
6	The Role of Pyrophosphorolysis in the Initiation-to-Elongation Transition by E. coli RNA Polymerase. Journal of Molecular Biology, 2019, 431, 2528-2542.	4.2	7
7	RNA–DNA and DNA–DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate. Nucleic Acids Research, 2018, 46, 5764-5775.	14.5	12
8	RNA Polymerases and Transcription. , 2018, , 1-9.		0
9	Production and characterization of a highly pure RNA polymerase holoenzyme from Mycobacterium tuberculosis. Protein Expression and Purification, 2017, 134, 1-10.	1.3	7
10	A <i>Cre</i> Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in <i>Escherichia coli</i> Genetics, 2017, 206, 179-187.	2.9	26
11	Cotranscriptional Production of Chemically Modified RNA Nanoparticles. Methods in Molecular Biology, 2017, 1632, 91-105.	0.9	4
12	Productive mRNA stem loop-mediated transcriptional slippage: Crucial features in common with intrinsic terminators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1984-93.	7.1	20
13	Computational and Experimental Studies of Reassociating RNA/DNA Hybrids Containing Split Functionalities. Methods in Enzymology, 2015, 553, 313-334.	1.0	12
14	Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles. ACS Nano, 2015, 9, 251-259.	14.6	100
15	Direct Competition Assay for Transcription Fidelity. Methods in Molecular Biology, 2015, 1276, 153-164.	0.9	2
16	Co-transcriptional production of RNA–DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Research, 2014, 42, 2085-2097.	14.5	54
17	A Genetic Assay for Transcription Errors Reveals Multilayer Control of RNA Polymerase II Fidelity. PLoS Genetics, 2014, 10, e1004532.	3.5	26
18	Coliphage HK022 Nun protein inhibits RNA polymerase translocation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2368-75.	7.1	28

#	Article	IF	CITATIONS
19	<i>In Silico</i> Design and Enzymatic Synthesis of Functional RNA Nanoparticles. Accounts of Chemical Research, 2014, 47, 1731-1741.	15.6	80
20	Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II. Journal of Molecular Biology, 2013, 425, 697-712.	4.2	38
21	RNA Polymerase Structure, Function, Regulation, Dynamics, Fidelity, and Roles in GENE EXPRESSION. Chemical Reviews, 2013, 113, 8325-8330.	47.7	8
22	The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 187-198.	1.9	31
23	The Fidelity of Transcription. Journal of Biological Chemistry, 2013, 288, 2689-2699.	3.4	30
24	Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. ELife, 2013, 2, e00971.	6.0	111
25	Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides. PLoS Pathogens, 2012, 8, e1003030.	4.7	119
26	Co-transcriptional Assembly of Chemically Modified RNA Nanoparticles Functionalized with siRNAs. Nano Letters, 2012, 12, 5192-5195.	9.1	117
27	Mechanism of Translesion Transcription by RNA Polymerase II and Its Role in Cellular Resistance to DNA Damage. Molecular Cell, 2012, 46, 18-29.	9.7	104
28	Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. BMC Biophysics, 2012, 5, 11.	4.4	35
29	Interaction of RNA Polymerase II Fork Loop 2 with Downstream Non-template DNA Regulates Transcription Elongation. Journal of Biological Chemistry, 2011, 286, 30898-30910.	3.4	25
30	Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nature Structural and Molecular Biology, 2010, 17, 745-752.	8.2	114
31	Translocation by multi-subunit RNA polymerases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 389-401.	1.9	43
32	Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 575-587.	1.9	34
33	Site-directed mutagenesis, purification and assay of Saccharomyces cerevisiae RNA polymerase II. Protein Expression and Purification, 2010, 69, 83-90.	1.3	17
34	Mechanism of sequence-specific pausing of bacterial RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8900-8905.	7.1	100
35	Rpb9 Subunit Controls Transcription Fidelity by Delaying NTP Sequestration in RNA Polymerase II. Journal of Biological Chemistry, 2009, 284, 19601-19612.	3.4	74
36	Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods, 2009, 48, 333-345.	3.8	27

#	Article	IF	Citations
37	Transient Reversal of RNA Polymerase II Active Site Closing Controls Fidelity of Transcription Elongation. Molecular Cell, 2008, 30, 557-566.	9.7	154
38	Effects of Friedreich's ataxia (GAA) n {middle dot}(TTC) n repeats on RNA synthesis and stability. Nucleic Acids Research, 2007, 35, 1075-1084.	14.5	49
39	Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil. Genetics, 2006, 172, 2201-2209.	2.9	96
40	Nature of the Nucleosomal Barrier to RNA Polymerase II. Molecular Cell, 2005, 18, 97-108.	9.7	198
41	Chromatin remodeling by RNA polymerases. Trends in Biochemical Sciences, 2004, 29, 127-135.	7.5	88
42	Assay of the Fate of the Nucleosome During Transcription by RNA Polymerase II. Methods in Enzymology, 2003, 371, 564-577.	1.0	15
43	Assays and Affinity Purification of Biotinylated and Nonbiotinylated Forms of Double-Tagged Core RNA Polymerase II from Saccharomyces cerevisiae. Methods in Enzymology, 2003, 370, 138-155.	1.0	45
44	Engineering of Elongation Complexes of Bacterial and Yeast RNA Polymerases. Methods in Enzymology, 2003, 371, 233-251.	1.0	78
45	Bacterial Polymerase and Yeast Polymerase II Use Similar Mechanisms for Transcription through Nucleosomes. Journal of Biological Chemistry, 2003, 278, 36148-36156.	3.4	51
46	Nucleosome Remodeling Induced by RNA Polymerase II. Molecular Cell, 2002, 9, 541-552.	9.7	419
47	Shortening of RNA:DNA Hybrid in the Elongation Complex of RNA Polymerase Is a Prerequisite for Transcription Termination. Molecular Cell, 2002, 10, 1151-1162.	9.7	130
48	The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex. Journal of Biological Chemistry, 2000, 275, 6530-6536.	3.4	200
49	Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity 1 1Edited by R. Ebright. Journal of Molecular Biology, 2000, 299, 325-335.	4.2	52
50	Activation-dependent Adhesion of Human Platelets to Cyr61 and Fisp12/Mouse Connective Tissue Growth Factor Is Mediated through Integrin \hat{l} ±Ilb \hat{l} 23. Journal of Biological Chemistry, 1999, 274, 24321-24327.	3.4	196
51	Adhesion of Human Umbilical Vein Endothelial Cells to the Immediate-Early Gene Product Cyr61 Is Mediated through Integrin αvβ3. Journal of Biological Chemistry, 1998, 273, 3090-3096.	3.4	192
52	CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6355-6360.	7.1	432
53	Cyr61, Product of a Growth Factor-Inducible Immediate-Early Gene, Regulates Chondrogenesis in Mouse Limb Bud Mesenchymal Cells. Developmental Biology, 1997, 192, 492-508.	2.0	140
54	Cyr61 and Fisp12 Are Both ECM-Associated Signaling Molecules: Activities, Metabolism, and Localization during Development. Experimental Cell Research, 1997, 233, 63-77.	2.6	243

#	Article	IF	CITATIONS
55	Cyr61, a Product of a Growth Factor-Inducible Immediate-Early Gene, Promotes Cell Proliferation, Migration, and Adhesion. Molecular and Cellular Biology, 1996, 16, 1326-1334.	2.3	309
56	Circularly permuted dihydrofolate reductase of E.coli has functional activity and a destabilized tertiary structure. Protein Engineering, Design and Selection, 1994, 7, 1373-1377.	2.1	38
57	Novel data on interactions of elongation factor Ts. Biochimie, 1992, 74, 419-425.	2.6	15