Benno Willke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431694/publications.pdf

Version: 2024-02-01

3149 764 63,586 350 92 249 citations h-index g-index papers 353 353 353 19116 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-Frequency 336 W Spliceless All-Fiber Amplifier Based on a Chirally-Coupled-Core Fiber for the Next Generation of Gravitational Wave Detectors. Journal of Lightwave Technology, 2022, 40, 2136-2143.	2.7	14
2	Design of the ALPS II optical system. Physics of the Dark Universe, 2022, 35, 100968.	1.8	14
3	Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10ÂdB. Physical Review Letters, 2022, 128, 083606.	2.9	10
4	Characterization of Laser Systems at 1550 nm Wavelength for Future Gravitational Wave Detectors. Instruments, 2022, 6, 15.	0.8	6
5	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
6	Passive laser power stabilization via an optical spring. Optics Letters, 2022, 47, 2746.	1.7	2
7	Stabilized laser system at 1550Ânm wavelength for future gravitational-wave detectors. Physical Review D, 2022, 105, .	1.6	8
8	10ÂdB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection. Physical Review Letters, 2022, 129, .	2.9	13
9	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
10	Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors. Optics Express, 2021, 29, 10140.	1.7	22
11	Laser power stabilization via radiation pressure. Optics Letters, 2021, 46, 1946.	1.7	3
12	Point absorbers in Advanced LIGO. Applied Optics, 2021, 60, 4047.	0.9	24
13	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	6.0	59
14	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	1.5	38
15	LIGO's quantum response to squeezed states. Physical Review D, 2021, 104, .	1.6	19
16	Direct limits for scalar field dark matter from a gravitational-wave detector. Nature, 2021, 600, 424-428.	13.7	43
17	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	2.9	3
18	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447

#	Article	IF	Citations
19	Advanced LIGO Laser Systems for O3 and Future Observation Runs. Galaxies, 2020, 8, 84.	1.1	7
20	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102 , .	1.6	196
21	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
22	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
23	A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 2020, 37, 165003.	1.5	120
24	Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors. Applied Optics, 2020, 59, 7945.	0.9	10
25	Optics mounting and alignment for the central optical bench of the dual cavity enhanced light-shining-through-a-wall experiment ALPS II. Applied Optics, 2020, 59, 8839.	0.9	3
26	Sequential high power laser amplifiers for gravitational wave detection. Optics Express, 2020, 28, 29469.	1.7	14
27	Fundamental limits of laser power stabilization via a radiation pressure transfer scheme. Optics Letters, 2020, 45, 3969.	1.7	2
28	Frequency-doubling of continuous laser light in the Laguerre–Gaussian modes LG _{0,0} and LG _{3,3} . Optics Letters, 2020, 45, 5262.	1.7	4
29	Low-noise, single-frequency 200 W fiber amplifier. , 2020, , .		1
30	Frequency-doubling of continuous laser light in Laguerre–Gaussian modes LG0,0 and LG3,3: publisher's note. Optics Letters, 2020, 45, 5566.	1.7	0
31	Numerical analysis of LG _{3,3} second harmonic generation in comparison to the LG _{0,0} case. Optics Express, 2020, 28, 35816.	1.7	2
32	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
33	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
34	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
35	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
36	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	1.6	77

#	Article	IF	Citations
37	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	2.9	36
38	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	2.9	359
39	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
40	High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Optics Express, 2019, 27, 28523.	1.7	52
41	Nd:YVO ₄ high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors. Optics Letters, 2019, 44, 719.	1.7	14
42	Optical AC coupling power stabilization at frequencies close to the gravitational wave detection band. Optics Letters, 2019, 44, 1916.	1.7	5
43	Characterization and Long-Term Operation of a 200 W Single-Frequency Fiber Amplifier for Gravitational Wave Detectors. , 2019, , .		0
44	Characterization of the monolithic fiber amplifier engineering prototype for the next generation of gravitational wave detectors. , 2019, , .		1
45	Pre-stabilized lasers. International Journal of Population Studies, 2019, , 459-489.	0.0	0
46	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
47	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
48	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
49	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
50	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
51	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	1.6	104
52	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
53	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
54	Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light. Physical Review Letters, 2018, 121, 173601.	2.9	25

#	Article	IF	CITATIONS
55	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
56	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
57	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
58	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
59	Observation of gravitational waves from a binary black hole merger – dawn of a new astronomy. Symmetry: Culture and Science, 2018, 29, 257-264.	0.1	1
60	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
61	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
62	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
63	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
64	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
65	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
66	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
67	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
68	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
69	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
70	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
71	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
72	Multi-messenger Observations of a Binary Neutron Star Merger < sup>*. Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805

#	Article	IF	Citations
73	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
74	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
75	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	1.0	16
76	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
77	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
78	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
79	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	2.9	24
80	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
81	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
82	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	0.6	6
83	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
84	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
85	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
86	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
87	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
88	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
89	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
90	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968

#	Article	IF	CITATIONS
91	Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer: publisher's note. Optics Letters, 2017, 42, 1067.	1.7	0
92	Stabilization and characterization of ultra-low noise lasers for gravitational wave detectors. , 2017, , .		0
93	Demonstration of the optical AC coupling technique at the advanced LIGO gravitational wave detector. Classical and Quantum Gravity, 2017, 34, 145001.	1.5	4
94	Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer. Optics Letters, 2017, 42, 755.	1.7	28
95	Higher-order Laguerre–Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors. Optics Letters, 2017, 42, 751.	1.7	21
96	Characterization of optical systems for the ALPS II experiment. Optics Express, 2016, 24, 29237.	1.7	4
97	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
98	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
99	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
100	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
101	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
102	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
103	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
104	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
105	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
106	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
107	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
108	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29

#	Article	IF	Citations
109	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
110	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
111	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	1.6	286
112	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
113	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
114	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
115	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
116	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
117	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
118	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
119	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
120	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
121	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
122	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
123	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
124	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
125	GEO 600 and the GEO-HF upgrade program: successes and challenges. Classical and Quantum Gravity, 2016, 33, 075009.	1.5	86
126	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1

#	Article	IF	CITATIONS
127	Technology for the next gravitational wave detectors. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	17
128	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
129	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
130	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
131	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
132	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
133	Novel technique for thermal lens measurement in commonly used optical components. Optics Express, 2015, 23, 15380.	1.7	9
134	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
135	Advanced techniques in GEO 600. Classical and Quantum Gravity, 2014, 31, 224002.	1.5	77
136	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
137	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
138	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
139	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
140	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
141	Thermal correction of astigmatism in the gravitational wave observatory GEO 600. Classical and Quantum Gravity, 2014, 31, 065008.	1.5	8
142	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
143	Implementation of an $\frac{F}{s}$ -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
144	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125

#	Article	IF	CITATIONS
145	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
146	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
147	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
148	Search for Gravitational Waves Associated with $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> $<$ mml:mi> $\hat{I}^3<$ mml:mi> $<$ /mml:math>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	2.9	32
149	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014 , 89 , .	1.6	35
150	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
151	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
152	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
153	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
154	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
155	Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power. Physical Review Letters, 2013, 110, 251101.	2.9	33
156	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
157	Stabilized high-power laser for gravitational wave detection. , 2013, , .		0
158	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
159	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
160	Any light particle search II â€" Technical Design Report. Journal of Instrumentation, 2013, 8, T09001-T09001.	0.5	237
161	Optical layout for a 10 m Fabry–Perot Michelson interferometer with tunable stability. Classical and Quantum Gravity, 2012, 29, 075003.	1.5	9
162	A new method for the absolute amplitude calibration of GEO 600. Classical and Quantum Gravity, 2012, 29, 065001.	1.5	4

#	Article	IF	CITATIONS
163	Status of the AEI 10 m prototype. Classical and Quantum Gravity, 2012, 29, 145005.	1.5	4
164	Suspension platform interferometer for the AEI 10 m prototype: concept, design and optical layout. Classical and Quantum Gravity, 2012, 29, 095024.	1.5	11
165	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
166	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
167	Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Optics Express, 2012, 20, 10617.	1.7	153
168	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
169	The AEI 10 m Prototype Interferometer frequency control using the reference cavity and its angular control. Journal of Physics: Conference Series, 2012, 363, 012012.	0.3	1
170	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
171	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
172	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	1.6	60
173	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
174	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
175	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
176	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
177	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	1.6	2
178	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
179	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	O
180	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2

#	Article	IF	CITATIONS
181	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
182	Design of the 10 m AEI prototype facility for interferometry studies. Applied Physics B: Lasers and Optics, 2012, 106, 551-557.	1.1	13
183	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
184	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, $2011, 83, .$	1.6	54
185	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, $2011, 83, .$	1.6	85
186	Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers. Optics Express, 2011, 19, 19600.	1.7	27
187	Laser power noise detection at the quantum-noise limit of 32 A photocurrent. Optics Letters, 2011, 36, 3563.	1.7	7
188	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
189	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
190	Collinear Coherent Beam Combining of Two Ytterbium Doped Single Frequency Fiber Amplifiers. , 2011, , .		0
191	Lasers and optics: looking towards third generation gravitational wave detectors. General Relativity and Gravitation, 2011, 43, 569-592.	0.7	14
192	New concepts and results in laser power stabilization. Applied Physics B: Lasers and Optics, 2011, 102, 515-522.	1.1	17
193	Injection-locked single-frequency laser with an output power ofÂ220ÂW. Applied Physics B: Lasers and Optics, 2011, 102, 529-538.	1.1	62
194	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
195	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	1.6	0
196	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
197	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6. 5	716
198	Control and automatic alignment of the output mode cleaner of GEO 600. Journal of Physics: Conference Series, 2010, 228, 012014.	0.3	5

#	Article	IF	Citations
199	Designs of the frequency reference cavity for the AEI 10 m Prototype interferometer. Journal of Physics: Conference Series, 2010, 228, 012028.	0.3	2
200	Building blocks for future detectors: Silicon test masses and 1550 nm laser light. Journal of Physics: Conference Series, 2010, 228, 012029.	0.3	17
201	Towards a Suspension Platform Interferometer for the AEI 10 m Prototype Interferometer. Journal of Physics: Conference Series, 2010, 228, 012027.	0.3	2
202	The upgrade of GEO 600. Journal of Physics: Conference Series, 2010, 228, 012012.	0.3	79
203	Commissioning of the tuned DC readout at GEO 600. Journal of Physics: Conference Series, 2010, 228, 012013.	0.3	5
204	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
205	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	1.6	104
206	Stabilized lasers for advanced gravitational wave detectors. Laser and Photonics Reviews, 2010, 4, 780-794.	4.4	28
207	New ALPS results on hidden-sector lightweights. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 689, 149-155.	1.5	278
208	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	0.7	120
209	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
210	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
211	The AEI 10 m prototype interferometer. Classical and Quantum Gravity, 2010, 27, 084023.	1.5	25
212	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
213	Quantum limit of different laser power stabilization schemes involving optical resonators. Journal of Physics: Conference Series, 2010, 228, 012023.	0.3	1
214	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	1.5	20
215	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
216	Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode. Optics Letters, 2010, 35, 3742.	1.7	44

#	Article	IF	CITATIONS
217	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
218	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
219	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
220	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	2.9	83
221	Strong reduction of laser power noise by means of a Kerr nonlinear cavity. Physical Review A, 2009, 80, .	1.0	12
222	Investigation of the Self-Injection Locked Behaviour of a Continuous Wave Nd:YAG Ring Laser., 2009,,.		0
223	DC-readout of a signal-recycled gravitational wave detector. Classical and Quantum Gravity, 2009, 26, 055012.	1.5	64
224	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
225	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
226	Resonant laser power build-up in ALPS—A "light shining through a wall―experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 612, 83-96.	0.7	69
227	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	1.6	83
228	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	1.6	79
229	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	8.1	971
230	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	1.6	78
231	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	1.6	45
232	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	105
233	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	1.6	120
234	Shot-noise-limited laser power stabilization with a high-power photodiode array. Optics Letters, 2009, 34, 2912.	1.7	53

#	Article	IF	Citations
235	Laser power stabilization using optical ac coupling and its quantum and technical limits. Applied Optics, 2009, 48, 5423.	2.1	11
236	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	1.6	38
237	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	32
238	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	1.6	45
239	Optical ac coupling to overcome limitations in the detection of optical power fluctuations. Optics Letters, 2008, 33, 1509.	1.7	19
240	Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers. Applied Optics, 2008, 47, 6022.	2.1	23
241	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	1.6	0
242	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
243	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	1.6	60
244	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	1.6	110
245	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	1.6	54
246	Opto-mechanical frequency shifting of scattered light. Journal of Optics, 2008, 10, 085004.	1.5	7
247	Stabilized lasers for advanced gravitational wave detectors. Classical and Quantum Gravity, 2008, 25, 114040.	1.5	56
248	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
249	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	1.5	22
250	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
251	Measurement and simulation of laser power noise in GEO 600. Classical and Quantum Gravity, 2008, 25, 035003.	1.5	3
252	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	1.6	0

#	Article	IF	CITATIONS
253	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	1.6	O
254	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	1.6	126
255	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	2.9	69
256	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	1.6	143
257	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	1.6	160
258	Characterization and Stabilization of High-Power Solid-State Lasers. , 2007, , MA5.		0
259	GEO600: status and plans. Classical and Quantum Gravity, 2007, 24, S389-S397.	1.5	37
260	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	1.5	78
261	Photon-pressure-induced test mass deformation in gravitational-wave detectors. Classical and Quantum Gravity, 2007, 24, 5681-5688.	1.5	15
262	Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector. Classical and Quantum Gravity, 2007, 24, 1513-1523.	1.5	27
263	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	1.6	121
264	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	1.6	0
265	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	1.6	35
266	Charge measurement and mitigation for the main test masses of the GEO 600 gravitational wave observatory. Classical and Quantum Gravity, 2007, 24, 6379-6391.	1.5	28
267	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	1.6	120
268	Single-frequency photonic crystal fiber amplifier with 148-W output power. , 2007, , .		0
269	Fundamental mode, single-frequency laser amplifier for gravitational wave detectors. Optics Express, 2007, 15, 459.	1.7	56
270	Laser beam quality and pointing measurement with an optical resonator. Review of Scientific Instruments, 2007, 78, 073103.	0.6	79

#	Article	IF	CITATIONS
271	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	1.6	128
272	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	1.6	90
273	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn></mml:math> hyper of 27 December 2004 using LIGO. Physical Review D. 2007. 76	fl <mark>a</mark> ré	51
274	The GEO 600 core optics. Optics Communications, 2007, 280, 492-499.	1.0	15
275	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	1.6	75
276	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	1.6	40
277	Laser power stabilization for second-generation gravitational wave detectors. Optics Letters, 2006, 31, 2000.	1.7	44
278	Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Optics Express, 2006, 14, 11071.	1.7	36
279	Measurement of a low-absorption sample of OH-reduced fused silica. Applied Optics, 2006, 45, 7269.	2.1	27
280	A photon pressure calibrator for the GEO 600 gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 353, 1-3.	0.9	17
281	Intensity and frequency noise reduction of a Nd:YAG NPRO via pump light stabilisation. Applied Physics B: Lasers and Optics, 2006, 85, 79-84.	1.1	7
282	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214.	1.5	133
283	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78.	1.5	123
284	Linear projection of technical noise for interferometric gravitational-wave detectors. Classical and Quantum Gravity, 2006, 23, 527-537.	1.5	20
285	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	1.5	40
286	Stabilized High Power Laser for Advanced Gravitational Wave Detectors. Journal of Physics: Conference Series, 2006, 32, 270-275.	0.3	7
287	High Power Single-Frequency Laser for Gravitational Wave Detection. , 2006, , .		1
288	THE LIGO GRAVITATIONAL WAVE OBSERVATORIES: RECENT RESULTS AND FUTURE PLANS. , 2006, , .		0

#	Article	IF	CITATIONS
289	195 W injection-locked single-frequency laser system. , 2005, , .		1
290	Results from the first burst hardware injections performed on GEO 600. Classical and Quantum Gravity, 2005, 22, 3015-3028.	1.5	9
291	Feedforward correction of mirror misalignment fluctuations for the GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2005, 22, 3093-3104.	1.5	2
292	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198.	1.5	27
293	Optimal time-domain combination of the two calibrated output quadratures of GEO 600. Classical and Quantum Gravity, 2005, 22, 4253-4261.	1.5	20
294	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	2.9	130
295	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	2.9	89
296	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	1.6	57
297	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	1.6	79
298	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Physical Review D, 2005, 72, .	1.6	74
299	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	1.6	49
300	High-Power Fundamental Mode Single-Frequency Laser. , 2005, , .		0
301	Status of GEO 600. Classical and Quantum Gravity, 2004, 21, S417-S423.	1.5	85
302	High-power single-frequency Nd:YAG laser for gravitational wave detection. Classical and Quantum Gravity, 2004, 21, S895-S901.	1.5	31
303	Calibration of the dual-recycled GEO 600 detector for the S3 science run. Classical and Quantum Gravity, 2004, 21, S1711-S1722.	1.5	15
304	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	1.5	4
305	Commissioning, characterization and operation of the dual-recycled GEO 600. Classical and Quantum Gravity, 2004, 21, S1737-S1745.	1.5	15
306	Alignment control of GEO 600. Classical and Quantum Gravity, 2004, 21, S441-S449.	1.5	19

#	Article	IF	Citations
307	Dual recycling for GEO 600. Classical and Quantum Gravity, 2004, 21, S473-S480.	1.5	35
308	Frequency-domain interferometer simulation with higher-order spatial modes. Classical and Quantum Gravity, 2004, 21, S1067-S1074.	1.5	81
309	Analysis of first LIGO science data for stochastic gravitational waves. Physical Review D, 2004, 69, .	1.6	96
310	First upper limits from LIGO on gravitational wave bursts. Physical Review D, 2004, 69, .	1.6	108
311	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	1.6	165
312	Analysis of LIGO data for gravitational waves from binary neutron stars. Physical Review D, 2004, 69, .	1.6	145
313	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	0.7	259
314	High power fundamental mode Nd:YAG laser with efficient birefringence compensation. Optics Express, 2004, 12, 3581.	1.7	90
315	Automatic beam alignment for the mode-cleaner cavities of GEO 600. Applied Optics, 2004, 43, 1938.	2.1	4
316	Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique. Optics Letters, 2004, 29, 2148.	1.7	25
317	The status of GEO 600. , 2004, , .		2
318	High-power injection-locked single-frequency laser for the next generation of ground-based gravitational wave detectors. , 2004, , .		0
319	High-power injection-locked single-frequency laser for the next generation of ground-based gravitational wave detectors. , 2004, , .		0
320	Mode-cleaning and injection optics of the gravitational-wave detector GEO600. Review of Scientific Instruments, 2003, 74, 3787-3795.	0.6	27
321	A report on the status of the GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2003, 20, S581-S591.	1.5	14
322	Detector characterization in GEO 600. Classical and Quantum Gravity, 2003, 20, S731-S739.	1.5	0
323	Status of the GEO600 gravitational wave detector. , 2003, , .		2
324	The GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2002, 19, 1377-1387.	1.5	284

#	Article	lF	CITATIONS
325	Data acquisition and detector characterization of GEO600. Classical and Quantum Gravity, 2002, 19, 1399-1407.	1.5	15
326	Towards measuring the off-resonant thermal noise of a pendulum mirror. Classical and Quantum Gravity, 2002, 19, 1717-1721.	1.5	4
327	Performance of a 1200 m long suspended Fabry–Perot cavity. Classical and Quantum Gravity, 2002, 19, 1389-1397.	1.5	12
328	The GEO 600 laser system. Classical and Quantum Gravity, 2002, 19, 1775-1781.	1.5	38
329	The modecleaner system and suspension aspects of GEO 600. Classical and Quantum Gravity, 2002, 19, 1835-1842.	1.5	21
330	The automatic alignment system of GEO 600. Classical and Quantum Gravity, 2002, 19, 1849-1855.	1.5	14
331	Silica research in Glasgow. Classical and Quantum Gravity, 2002, 19, 1655-1662.	1.5	17
332	Use of Bioanalytical Systems for the Improvement of Industrial Tryptophan Production. Engineering in Life Sciences, 2001, 1, 15-17.	2.0	8
333	The GEO 600 stabilized laser system and the current-lock technique. AIP Conference Proceedings, 2000,	0.3	1
334	Demonstration of detuned dual recycling at the Garching 30Âm laser interferometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 277, 135-142.	0.9	20
335	The status of GEO600. AIP Conference Proceedings, 2000, , .	0.3	2
336	GEO 600 slave laser prototype II. AIP Conference Proceedings, 2000, , .	0.3	0
337	A laser-locked cavity ring-down spectrometer employing an analog detection scheme. Review of Scientific Instruments, 2000, 71, 347-353.	0.6	119
338	Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source. Optics Letters, 2000, 25, 1019.	1.7	30
339	Dynamic response of a Fabry–Perot interferometer. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 523.	0.9	94
340	Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner. Optics Letters, 1998, 23, 1704.	1.7	124
341	Quantum noise in a continuous-wave laser-diode-pumped Nd:YAG linear optical amplifier. Optics Letters, 1998, 23, 1852.	1.7	9
342	Experimental Demonstration of a Suspended Dual Recycling Interferometer for Gravitational Wave Detection. Physical Review Letters, 1998, 81, 5493-5496.	2.9	66

#	Article	IF	CITATIONS
343	Ecological pre-release risk assessment of two genetically engineered, bioluminescent Rhizobium meliloti strains in soil column model systems. Biology and Fertility of Soils, 1997, 25, 340-348.	2.3	8
344	Monolithically suspended fused silica substrates with very high mechanical Q. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 225, 39-44.	0.9	19
345	Laser photoionization of copper atoms in the dark space of a hollow cathode discharge. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 899-904.	0.6	5
346	Measurement of photoionization cross sections from the laser-excited Ba I (6s6p)1P10state. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 1129-1140.	0.6	16
347	Comment on â€~â€~Absolute cross sections for the photoionization of the 6s6p1Pexcited state of barium'' Physical Review Letters, 1992, 69, 692-692.	м 2.9	2
348	Photoionization cross sections from the Ba i $(6s6p)1P1\hat{A}^{\circ}$ state. Physical Review A, 1991, 43, 6433-6436.	1.0	22
349	Lasers for high optical power interferometers. , 0, , 171-185.		0
350	Quantum correlation measurement of laserpower noise below shot noise. , 0, , .		2