Yoshihisa Ohko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743120/publications.pdf Version: 2024-02-01

YOSHIHISA OHKO

#	Article	IF	CITATIONS
1	Removal of methyl mercaptan with highly-mobile silver on graphitic carbon-nitride (g-C 3 N 4) photocatalyst. Applied Catalysis B: Environmental, 2016, 198, 133-141.	20.2	52
2	Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. International Biodeterioration and Biodegradation, 2013, 78, 1-6.	3.9	18
3	Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. Journal of Contaminant Hydrology, 2011, 124, 14-24.	3.3	35
4	Unexpected release of HNO3 and related species from UV-illuminated TiO2 surface into air in photocatalytic oxidation of NO2. Environmental Chemistry Letters, 2010, 8, 289-294.	16.2	14
5	Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. Journal of Hazardous Materials, 2010, 184, 386-391.	12.4	107
6	Photocatalytic oxidation of nitrogen monoxide using TiO2 thin films under continuous UV light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 28-33.	3.9	70
7	Highly selective photocatalytic reduction of NO2 in air to NO using Cu2+-loaded TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 27-31.	3.9	11
8	Prevention of Phormidium tenue Biofilm Formation by TiO2 Photocatalysis. Microbes and Environments, 2009, 24, 241-245.	1.6	16
9	Selfâ€sterilization using silicone catheters coated with Ag and TiO ₂ nanocomposite thin film. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 453-460.	3.4	103
10	Photocatalytic Oxidation of Nitrogen Dioxide with TiO ₂ Thin Films under Continuous UV-Light Illumination. Journal of Physical Chemistry C, 2008, 112, 10502-10508.	3.1	90
11	X-ray induced photoelectrochemistry on TiO2. Electrochimica Acta, 2007, 52, 6938-6942.	5.2	26
12	Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: Basis and study of clinical use. International Journal of Urology, 2007, 14, 426-430.	1.0	50
13	Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Physical Chemistry Chemical Physics, 2005, 7, 3851.	2.8	178
14	Switchable rewritability of Ag–TiO2nanocomposite films with multicolor photochromism. Chemical Communications, 2005, , 1288-1290.	4.1	88
15	TiO2Films Loaded with Silver Nanoparticles:Â Control of Multicolor Photochromic Behavior. Journal of the American Chemical Society, 2004, 126, 3664-3668.	13.7	331
16	Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. Electrochemistry Communications, 2003, 5, 793-796.	4.7	127
17	Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 115-120.	3.9	73
18	Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Materials, 2003, 2, 29-31.	27.5	614

Уознініза Онко

#	Article	IF	CITATIONS
19	Charge–discharge behavior of TiO2–WO3photocatalysis systems with energy storage ability. Physical Chemistry Chemical Physics, 2003, 5, 3234-3237.	2.8	98
20	Surface diffusion behavior of photo-generated active species or holes on TiO2 photocatalysts. Physical Chemistry Chemical Physics, 2003, 5, 4764.	2.8	26
21	Mechanism and Applications of Energy Storage Photocatalyst Hyomen Kagaku, 2003, 24, 13-18.	0.0	0
22	Energy Storage of TiO2â^'WO3 Photocatalysis Systems in the Gas Phase. Langmuir, 2002, 18, 7777-7779.	3.5	227
23	17β-Estradiol Degradation by TiO2Photocatalysis as a Means of Reducing Estrogenic Activity. Environmental Science & Technology, 2002, 36, 4175-4181.	10.0	269
24	Metal-Coated Colloidal Crystal Film as Surface-Enhanced Raman Scattering Substrateâ€. Langmuir, 2002, 18, 5043-5046.	3.5	55
25	Control of the Optical Band Structure of Liquid Crystal Infiltrated Inverse Opal by a Photoinduced Nematicâ^'Isotropic Phase Transition. Journal of the American Chemical Society, 2002, 124, 10950-10951.	13.7	115
26	SrTiO ₃ -WO ₃ Photocatalysis Systems with an Energy Storage Ability. Electrochemistry, 2002, 70, 460-462.	1.4	23
27	Decomposition of endocrine-disrupting chemicals in water by use of TiO2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 207-212.	3.9	66
28	Degradation of Bisphenol A in Water by TiO2Photocatalyst. Environmental Science & Technology, 2001, 35, 2365-2368.	10.0	380
29	Characterization of TiO2Photocatalysis in the Gas Phase as a Photoelectrochemical System:Â Behavior of Salt-Modified Systems. Journal of Physical Chemistry B, 2001, 105, 10016-10021.	2.6	37
30	TiO2â^`WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability. Chemistry of Materials, 2001, 13, 2838-2842.	6.7	334
31	Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research Part B, 2001, 58, 97-101.	3.1	137
32	Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. , 2001, 58, 97.		1
33	Kinetic Analysis of the Photocatalytic Degradation of Gas-Phase 2-Propanol under Mass Transport-Limited Conditions with a TiO2 Film Photocatalyst. Journal of Physical Chemistry B, 1998, 102, 1724-1729.	2.6	169
34	Autoxidation of Acetaldehyde Initiated by TiO2Photocatalysis under Weak UV Illumination. Journal of Physical Chemistry B, 1998, 102, 2699-2704.	2.6	216
35	Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films. Journal of Physical Chemistry A, 1997, 101, 8057-8062.	2.5	449