
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7430456/publications.pdf Version: 2024-02-01

REDNO RIIVALI

#	Article	IF	CITATIONS
1	The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. Journal of Molecular Biology, 2022, 434, 167157.	4.2	53
2	Bacterial ribosome collision sensing by a MutS DNA repair ATPase paralogue. Nature, 2022, 603, 509-514.	27.8	27
3	Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO Journal, 2022, 41, .	7.8	14
4	Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science, 2021, 371, 57-64.	12.6	80
5	Nα-terminal acetylation of proteins by NatA and NatB serves distinct physiological roles in Saccharomyces cerevisiae. Cell Reports, 2021, 34, 108711.	6.4	26
6	Combinations of slow-translating codon clusters can increase mRNA half-life in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
7	Molecular dissection of amyloid disaggregation by human HSP70. Nature, 2020, 587, 483-488.	27.8	153
8	HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature, 2020, 587, 489-494.	27.8	140
9	The HSP110/HSP70 disaggregation system generates spreadingâ€competent toxic αâ€synuclein species. EMBO Journal, 2020, 39, e103954.	7.8	53
10	Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates. Journal of Molecular Biology, 2020, 432, 166696.	4.2	9
11	Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. Journal of Biological Chemistry, 2020, 295, 9676-9690.	3.4	103
12	Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Reports, 2020, 31, 107680.	6.4	43
13	Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells. Molecular Cell, 2020, 79, 561-574.e5.	9.7	96
14	Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature, 2020, 578, 317-320.	27.8	92
15	Functional diversity between HSP70 paralogs caused by variable interactions with specific co-chaperones. Journal of Biological Chemistry, 2020, 295, 7301-7316.	3.4	39
16	GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile. Cell Stem Cell, 2019, 25, 241-257.e8.	11.1	66
17	The Hsp70 chaperone network. Nature Reviews Molecular Cell Biology, 2019, 20, 665-680.	37.0	721
18	Toxic Activation of an AAA+ Protease by the Antibacterial Drug Cyclomarin A. Cell Chemical Biology, 2019, 26, 1169-1179.e4.	5.2	36

#	Article	IF	CITATIONS
19	Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis. Nature Communications, 2019, 10, 4851.	12.8	49
20	Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Cell Reports, 2019, 27, 3433-3446.e4.	6.4	46
21	Cellular Functions and Mechanisms of Action of Small Heat Shock Proteins. Annual Review of Microbiology, 2019, 73, 89-110.	7.3	127
22	Modulation of Amyloid States by Molecular Chaperones. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033969.	5.5	63
23	Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. International Journal of Molecular Sciences, 2019, 20, 6220.	4.1	4
24	Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annual Review of Biochemistry, 2019, 88, 337-364.	11.1	138
25	The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. ELife, 2019, 8, .	6.0	9
26	Protein Disaggregation in Multicellular Organisms. Trends in Biochemical Sciences, 2018, 43, 285-300.	7.5	103
27	Cellular Handling of Protein Aggregates by Disaggregation Machines. Molecular Cell, 2018, 69, 214-226.	9.7	280
28	A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins. Journal of Cell Biology, 2018, 217, 1269-1285.	5.2	57
29	Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E273-E282.	7.1	37
30	Nucleotide Exchange Factors for Hsp70 Chaperones. Methods in Molecular Biology, 2018, 1709, 179-188.	0.9	7
31	Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature, 2018, 561, 268-272.	27.8	266
32	Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress and Chaperones, 2017, 22, 493-502.	2.9	92
33	Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO Journal, 2017, 36, 783-796.	7.8	120
34	SecA Cotranslationally Interacts with Nascent Substrate Proteins <i>In Vivo</i> . Journal of Bacteriology, 2017, 199, .	2.2	59
35	Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone Sse1 is not obligate for its biological activities. Molecular Biology of the Cell, 2017, 28, 2066-2075.	2.1	31
36	The growing world of small heat shock proteins: from structure to functions. Cell Stress and Chaperones, 2017, 22, 601-611.	2.9	158

#	Article	IF	CITATIONS
37	<i>In vivo</i> properties of the disaggregase function of Jâ€proteins and Hsc70 in <i>Caenorhabditis elegans</i> stress and aging. Aging Cell, 2017, 16, 1414-1424.	6.7	53
38	Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation. Journal of Biological Chemistry, 2017, 292, 19610-19627.	3.4	4
39	Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux. Redox Biology, 2017, 13, 674-686.	9.0	31
40	Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Science Advances, 2017, 3, e1701726.	10.3	112
41	Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding. Cell, 2017, 170, 298-311.e20.	28.9	154
42	Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase. Frontiers in Molecular Biosciences, 2017, 4, 6.	3.5	8
43	Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. ELife, 2017, 6,	6.0	60
44	Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control. ELife, 2017, 6, .	6.0	32
45	Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nature Communications, 2016, 7, 13673.	12.8	147
46	Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. Science Advances, 2016, 2, e1600379.	10.3	33
47	Global profiling of SRP interaction with nascent polypeptides. Nature, 2016, 536, 219-223.	27.8	125
48	Bacterial and Yeast AAA + Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70. Journal of Molecular Biology, 2016, 428, 4378-4391.	4.2	22
49	Alternative modes of client binding enable functional plasticity of Hsp70. Nature, 2016, 539, 448-451.	27.8	167
50	Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Molecular Biology of the Cell, 2016, 27, 360-370.	2.1	72
51	Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding. Nature Communications, 2016, 7, 10341.	12.8	45
52	Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein. Journal of Molecular Biology, 2016, 428, 1356-1364.	4.2	74
53	Physical Origins of Codon Positions That Strongly Influence Cotranslational Folding: A Framework for Controlling Nascent-Protein Folding. Journal of the American Chemical Society, 2016, 138, 1180-1195.	13.7	27
54	Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Frontiers in Molecular Biosciences, 2015, 2, 22.	3.5	140

#	Article	IF	CITATIONS
55	Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Frontiers in Molecular Biosciences, 2015, 2, 57.	3.5	101
56	Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2015, 26, 1601-1615.	2.1	59
57	Spatially Organized Aggregation of Misfolded Proteins as Cellular Stress Defense Strategy. Journal of Molecular Biology, 2015, 427, 1564-1574.	4.2	164
58	Compartmentâ€specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO Journal, 2015, 34, 778-797.	7.8	243
59	Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature, 2015, 524, 247-251.	27.8	320
60	Finding nascent proteins the right home. Science, 2015, 348, 182-183.	12.6	1
61	Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science, 2015, 350, 678-680.	12.6	160
62	Pathways of allosteric regulation in Hsp70 chaperones. Nature Communications, 2015, 6, 8308.	12.8	110
63	Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Letters, 2015, 589, 3654-3664.	2.8	55
64	Human Hsp70 Disaggregase Reverses Parkinson's-Linked α-Synuclein Amyloid Fibrils. Molecular Cell, 2015, 59, 781-793.	9.7	336
65	Monitoring Protein Misfolding by Site-Specific Labeling of Proteins In Vivo. PLoS ONE, 2014, 9, e99395.	2.5	20
66	Co-translational mechanisms of protein maturation. Current Opinion in Structural Biology, 2014, 24, 24-33.	5.7	128
67	Mitochondria Tether Protein Trash to Rejuvenate Cellular Environments. Cell, 2014, 159, 471-472.	28.9	8
68	Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. ELife, 2014, 3, e02481.	6.0	111
69	Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nature Structural and Molecular Biology, 2013, 20, 843-850.	8.2	58
70	Coordination of Translational Control and Protein Homeostasis during Severe Heat Stress. Current Biology, 2013, 23, 2452-2462.	3.9	191
71	Mechanism of Hsp104/ClpB inhibition by prion curing Guanidinium hydrochloride. FEBS Letters, 2013, 587, 810-817.	2.8	20
72	Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature, 2013, 500, 98-101.	27.8	118

#	Article	IF	CITATIONS
73	Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nature Protocols, 2013, 8, 2212-2239.	12.0	112
74	Functional Analysis of Hsp70 Inhibitors. PLoS ONE, 2013, 8, e78443.	2.5	160
75	Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nature Structural and Molecular Biology, 2012, 19, 1347-1355.	8.2	152
76	Translation suppression promotes stress granule formation and cell survival in response to cold shock. Molecular Biology of the Cell, 2012, 23, 3786-3800.	2.1	137
77	Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. Journal of Cell Biology, 2012, 198, 387-404.	5.2	196
78	Chaperone networks in protein disaggregation and prion propagation. Journal of Structural Biology, 2012, 179, 152-160.	2.8	121
79	A tightly regulated molecular toggle controls AAA+ disaggregase. Nature Structural and Molecular Biology, 2012, 19, 1338-1346.	8.2	124
80	Concerted Action of the Ribosome and the Associated Chaperone Trigger Factor Confines Nascent Polypeptide Folding. Molecular Cell, 2012, 48, 63-74.	9.7	94
81	Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO Journal, 2012, 31, 4221-4235.	7.8	284
82	Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor InÂVivo. Cell, 2011, 147, 1295-1308.	28.9	419
83	SecA Interacts with Ribosomes in Order to Facilitate Posttranslational Translocation in Bacteria. Molecular Cell, 2011, 41, 343-353.	9.7	90
84	Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nature Structural and Molecular Biology, 2011, 18, 345-351.	8.2	181
85	Hsp42 is required for sequestration of protein aggregates into deposition sites in <i>Saccharomyces cerevisiae</i> . Journal of Cell Biology, 2011, 195, 617-629.	5.2	233
86	Integrating Protein Homeostasis Strategies in Prokaryotes. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004366-a004366.	5.5	82
87	Structure and function of the molecular chaperone Trigger Factor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 650-661.	4.1	210
88	Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO Journal, 2010, 29, 910-923.	7.8	241
89	Cellular strategies for controlling protein aggregation. Nature Reviews Molecular Cell Biology, 2010, 11, 777-788.	37.0	785
90	The Endoplasmic Reticulum Grp170 Acts as a Nucleotide Exchange Factor of Hsp70 via a Mechanism Similar to That of the Cytosolic Hsp110. Journal of Biological Chemistry, 2010, 285, 12445-12453.	3.4	46

#	Article	IF	CITATIONS
91	Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagationThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2010, 88, 63-75.	2.0	56
92	The Yeast AAA ⁺ Chaperone Hsp104 Is Part of a Network That Links the Actin Cytoskeleton with the Inheritance of Damaged Proteins. Molecular and Cellular Biology, 2009, 29, 3738-3745.	2.3	66
93	Largeâ€scale purification of ribosomeâ€nascent chain complexes for biochemical and structural studies. FEBS Letters, 2009, 583, 2407-2413.	2.8	41
94	ClpS is the recognition component for <i>Escherichia coli</i> substrates of the Nâ€end rule degradation pathway. Molecular Microbiology, 2009, 72, 506-517.	2.5	76
95	The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural and Molecular Biology, 2009, 16, 589-597.	8.2	420
96	Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Research in Microbiology, 2009, 160, 629-636.	2.1	31
97	Molecular mechanism and structure of Trigger Factor bound to the translating ribosome. EMBO Journal, 2008, 27, 1622-1632.	7.8	142
98	A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing. Nature, 2008, 452, 108-111.	27.8	93
99	Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nature Structural and Molecular Biology, 2008, 15, 641-650.	8.2	139
100	Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Molecular Microbiology, 2008, 68, 87-97.	2.5	171
101	Molecular Basis for Regulation of the Heat Shock Transcription Factor If 32 by the DnaK and DnaJ Chaperones. Molecular Cell, 2008, 32, 347-358.	9.7	151
102	Hsp110 Is a Nucleotide-activated Exchange Factor for Hsp70. Journal of Biological Chemistry, 2008, 283, 8877-8884.	3.4	142
103	Insights into the structural dynamics of the Hsp110–Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16519-16524.	7.1	70
104	Dynamics of Trigger Factor Interaction with Translating Ribosomes. Journal of Biological Chemistry, 2008, 283, 4124-4132.	3.4	82
105	Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochemical Society Transactions, 2008, 36, 120-125.	3.4	70
106	Hsp110 Chaperones Regulate Prion Formation and Propagation in S. cerevisiae by Two Discrete Activities. PLoS ONE, 2008, 3, e1763.	2.5	69
107	M Domains Couple the ClpB Threading Motor with the DnaK Chaperone Activity. Molecular Cell, 2007, 25, 247-260.	9.7	153
108	The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends in Cell Biology, 2007, 17, 165-172.	7.9	258

#	Article	IF	CITATIONS
109	Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Letters, 2006, 580, 168-174.	2.8	62
110	Molecular Chaperones and Protein Quality Control. Cell, 2006, 125, 443-451.	28.9	1,352
111	Allosteric Regulation of Hsp70 Chaperones by a Proline Switch. Molecular Cell, 2006, 21, 359-367.	9.7	166
112	Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO Journal, 2006, 25, 2510-2518.	7.8	243
113	The C-terminal Domain ofEscherichia coliTrigger Factor Represents the Central Module of Its Chaperone Activity. Journal of Biological Chemistry, 2006, 281, 31963-31971.	3.4	81
114	Trigger Factor Forms a Protective Shield for Nascent Polypeptides at the Ribosome. Journal of Biological Chemistry, 2006, 281, 6539-6545.	3.4	75
115	Allosteric Regulation of Hsp70 Chaperones Involves a Conserved Interdomain Linker. Journal of Biological Chemistry, 2006, 281, 38705-38711.	3.4	196
116	The C-terminal Domain of Escherichia coli Trigger Factor Represents the Central Module of Its Chaperone Activity. Journal of Biological Chemistry, 2006, 281, 31963-31971.	3.4	10
117	Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biological Chemistry, 2005, 386, 739-44.	2.5	92
118	Trigger Factor Peptidyl-prolyl cis/trans Isomerase Activity Is Not Essential for the Folding of Cytosolic Proteins in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 14165-14170.	3.4	94
119	Substrate recognition by the AAA+ chaperone ClpB. Nature Structural and Molecular Biology, 2004, 11, 607-615.	8.2	219
120	Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature, 2004, 431, 590-596.	27.8	347
121	Chaperone-Assisted Folding of Newly Synthesized Proteins in the Cytosol. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39, 261-277.	5.2	109
122	Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell, 2004, 119, 653-665.	28.9	433
123	Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Letters, 2004, 578, 351-356.	2.8	76
124	Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology, 2003, 50, 585-595.	2.5	342
125	Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Molecular Microbiology, 2003, 47, 1317-1328.	2.5	174
126	Poly-L-lysine enhances the protein disaggregation activity of ClpB. FEBS Letters, 2003, 553, 125-130.	2.8	14

#	Article	IF	CITATIONS
127	Roles of Individual Domains and Conserved Motifs of the AAA+ Chaperone ClpB in Oligomerization, ATP Hydrolysis, and Chaperone Activity. Journal of Biological Chemistry, 2003, 278, 17615-17624.	3.4	222
128	MecA, an adaptor protein necessary for ClpC chaperone activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2306-2311.	7.1	139
129	Refolding of Substrates Bound to Small Hsps Relies on a Disaggregation Reaction Mediated Most Efficiently by ClpB/DnaK. Journal of Biological Chemistry, 2003, 278, 31033-31042.	3.4	243
130	Characterization of a Trap Mutant of the AAA+ Chaperone ClpB. Journal of Biological Chemistry, 2003, 278, 32608-32617.	3.4	140
131	Mapping Temperature-induced Conformational Changes in the Escherichia coli Heat Shock Transcription Factor If 32 by Amide Hydrogen Exchange. Journal of Biological Chemistry, 2003, 278, 51415-51421.	3.4	50
132	Structure-Function Analysis of HscC, theEscherichia coli Member of a Novel Subfamily of Specialized Hsp70 Chaperones. Journal of Biological Chemistry, 2002, 277, 41060-41069.	3.4	45
133	Three-State Equilibrium of Escherichia coli Trigger Factor. Biological Chemistry, 2002, 383, 1611-9.	2.5	90
134	ClpS, a Substrate Modulator of the ClpAP Machine. Molecular Cell, 2002, 9, 673-683.	9.7	270
135	L23 protein functions as a chaperone docking site on the ribosome. Nature, 2002, 419, 171-174.	27.8	309
136	Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nature Structural Biology, 2002, 9, 906-911.	9.7	115
137	Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Molecular Microbiology, 2001, 40, 397-413.	2.5	302
138	Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature Structural Biology, 2001, 8, 427-432.	9.7	205
139	Bag-1M Accelerates Nucleotide Release for Human Hsc70 and Hsp70 and Can Act Concentration-dependent as Positive and Negative Cofactor. Journal of Biological Chemistry, 2001, 276, 32538-32544.	3.4	146
140	Functional Dissection of Trigger Factor and DnaK: Interactions with Nascent Polypeptides and Thermally Denatured Proteins. Biological Chemistry, 2001, 382, 1235-43.	2.5	51
141	Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Structural Biology, 2000, 7, 586-593.	9.7	335
142	Molecular Basis for Interactions of the DnaK Chaperone with Substrates. Biological Chemistry, 2000, 381, 877-85.	2.5	111
143	Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. Journal of Molecular Biology, 2000, 304, 245-251.	4.2	65
144	Getting Newly Synthesized Proteins into Shape. Cell, 2000, 101, 119-122.	28.9	406

#	Article	IF	CITATIONS
145	Size-dependent Disaggregation of Stable Protein Aggregates by the DnaK Chaperone Machinery. Journal of Biological Chemistry, 2000, 275, 21107-21113.	3.4	207
146	Substrate Specificity of the SecB Chaperone. Journal of Biological Chemistry, 1999, 274, 34219-34225.	3.4	137
147	Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature, 1999, 400, 693-696.	27.8	465
148	Investigation of the Interaction between DnaK and DnaJ by Surface Plasmon Resonance Spectroscopy. Journal of Molecular Biology, 1999, 289, 1131-1144.	4.2	126
149	Role of Region C in Regulation of the Heat Shock Gene-Specific Sigma Factor of <i>Escherichia coli</i> , Ï, ³² . Journal of Bacteriology, 1999, 181, 3552-3561.	2.2	45
150	Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Molecular Microbiology, 1998, 30, 567-581.	2.5	185
151	Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Molecular Microbiology, 1998, 30, 583-593.	2.5	118
152	The Hsp70 and Hsp60 Chaperone Machines. Cell, 1998, 92, 351-366.	28.9	2,634
153	The Amino-terminal 118 Amino Acids of Escherichia coli Trigger Factor Constitute a Domain That Is Necessary and Sufficient for Binding to Ribosomes. Journal of Biological Chemistry, 1997, 272, 21865-21871.	3.4	92
154	Identification of the prolyl isomerase domain of Escherichia coli trigger factor. FEBS Letters, 1996, 385, 67-71.	2.8	74
155	Substrate Shuttling Between the DnaK and GroEL Systems Indicates a Chaperone Network Promoting Protein Folding. Journal of Molecular Biology, 1996, 261, 328-333.	4.2	140
156	The Second Step of ATP Binding to DnaK Induces Peptide Release. Journal of Molecular Biology, 1996, 263, 657-670.	4.2	209
157	Nucleotide-induced Conformational Changes in the ATPase and Substrate Binding Domains of the DnaK Chaperone Provide Evidence for Interdomain Communication. Journal of Biological Chemistry, 1995, 270, 16903-16910.	3.4	233
158	A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Nature Structural and Molecular Biology, 1994, 1, 95-101.	8.2	124
159	Regulation of the Escherichia coli heat-shock response. Molecular Microbiology, 1993, 9, 671-680.	2.5	365