R L Hudson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7429613/publications.pdf

Version: 2024-02-01

236925 243625 2,119 70 25 44 citations h-index g-index papers 70 70 70 1375 times ranked citing authors docs citations all docs

#	Article	IF	Citations
1	Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 843-858.	3.9	123
2	The Formation of Cyanate Ion (OCNâ^²) in Interstellar Ice Analogs. Astrophysical Journal, 2001, 550, 1140-1150.	4.5	101
3	Radiation chemical alterations in solar system ices: An overview. Journal of Geophysical Research, 2001, 106, 33275-33284.	3.3	99
4	IR Spectra of Irradiated Cometary Ice Analogues Containing Methanol: A New Assignment, a Reassignment, and a Nonassignment. Icarus, 2000, 145, 661-663.	2.5	91
5	Energetic processing of laboratory ice analogs: UV photolysis versus ion bombardment. Journal of Geophysical Research, 2001, 106, 33381-33385.	3.3	90
6	The radiolysis of SO2 and H2S in water ice: Implications for the icy jovian satellites. Icarus, 2007, 189, 409-423.	2.5	88
7	INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE. Astrophysical Journal, Supplement Series, 2010, 191, 96-112.	7.7	82
8	Amino Acids from Ion-Irradiated Nitrile-Containing Ices. Astrobiology, 2008, 8, 771-779.	3.0	77
9	Hydrogen atom abstraction by methyl radicals in methanol glasses at 15–100 K: evidence for a limiting rate constant below 40 K by quantum-mechanical tunneling. Chemical Physics Letters, 1977, 48, 193-196.	2.6	71
10	The N3Radical as a Discriminator between Ionâ€irradiated And UVâ€photolyzed Astronomical Ices. Astrophysical Journal, 2002, 568, 1095-1099.	4.5	71
11	IR characterization and radiation chemistry of glycolaldehyde and ethylene glycol ices. Advances in Space Research, 2005, 36, 184-189.	2.6	57
12	Far-IR spectral changes accompanying proton irradiation of solids of astrochemical interest. Radiation Physics and Chemistry, 1995, 45, 779-789.	2.8	56
13	Formation of Interstellar OCS: Radiation Chemistry and IR Spectra of Precursor Ices. Astrophysical Journal, 2008, 684, 1210-1220.	4.5	56
14	In situ measurements of the radiation stability of amino acids at 15–140 K. Icarus, 2012, 220, 647-659.	2.5	56
15	INFRARED SPECTRA AND OPTICAL CONSTANTS OF ELUSIVE AMORPHOUS METHANE. Astrophysical Journal Letters, 2015, 805, L20.	8.3	49
16	Infrared spectra and band strengths of amorphous and crystalline N2O. Journal of Chemical Physics, 2017, 146, 024304.	3.0	49
17	FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO ₂ , AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES. Astrophysical Journal Letters, 2015, 808, L40.	8.3	48
18	A quantitative study of proton irradiation and UV photolysis of benzene in interstellar environments. Astronomy and Astrophysics, 2005, 440, 391-402.	5.1	45

#	Article	IF	CITATIONS
19	KETENE FORMATION IN INTERSTELLAR ICES: A LABORATORY STUDY. Astrophysical Journal, 2013, 773, 109.	4.5	42
20	Hydrocarbon Radiation Chemistry in Ices of Cometary Relevancea *†. Icarus, 1997, 126, 233-235.	2.5	38
21	IR spectra and properties of solid acetone, an interstellar and cometary molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 33-39.	3.9	37
22	Glycine's Radiolytic Destruction in Ices: First <i>in situ</i> Laboratory Measurements for Mars. Astrobiology, 2013, 13, 647-655.	3.0	34
23	Solid-Phase Formation of Interstellar Vinyl Alcohol. Astrophysical Journal, 2003, 586, L107-L110.	4.5	33
24	Infrared spectra and band strengths of CH ₃ SH, an interstellar molecule. Physical Chemistry Chemical Physics, 2016, 18, 25756-25763.	2.8	29
25	Quantifying acetaldehyde in astronomical ices and laboratory analogues: IR spectra, intensities, 13C shifts, and radiation chemistry. Monthly Notices of the Royal Astronomical Society, 2020, 492, 283-293.	4.4	29
26	Infrared spectra and optical constants of astronomical ices: III. Propane, propylene, and propyne. Icarus, 2021, 354, 114033.	2.5	26
27	A Modified Algorithm and Open-source Computational Package for the Determination of Infrared Optical Constants Relevant to Astrophysics. Astrophysical Journal, 2020, 901, 52.	4.5	26
28	Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule. Astrophysical Journal, 2017, 835, 225.	4.5	24
29	Direct measurements of infrared intensities of HCN and H2OÂ+ÂHCN ices for laboratory and observational astrochemistry. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3515-3522.	4.4	24
30	The spectrum of Jupiter's Great Red Spot: The case for ammonium hydrosulfide (NH4SH). Icarus, 2016, 271, 265-268.	2.5	22
31	Infrared Spectra and Interstellar Sulfur: New Laboratory Results for H ₂ S and Four Malodorous Thiol Ices. Astrophysical Journal, 2018, 867, 138.	4. 5	22
32	Thermallyâ€induced chemistry and the Jovian icy satellites: A laboratory study of the formation of sulfur oxyanions. Geophysical Research Letters, 2010, 37, .	4.0	21
33	Low-temperature thermal reactions between SO2 and H2O2 and their relevance to the jovian icy satellites. Icarus, 2013, 224, 257-259.	2.5	20
34	An IR investigation of solid amorphous ethanol â€" Spectra, properties, and phase changes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 187, 82-86.	3.9	20
35	Testing Densities and Refractive Indices of Extraterrestrial Ice Components Using Molecular Structures—Organic Compounds and Molar Refractions. Astrophysical Journal, 2020, 891, 22.	4.5	20
36	Activation of weak IR fundamentals of two species of astrochemical interest in the T _d point group – the importance of amorphous ices. Physical Chemistry Chemical Physics, 2015, 17, 12545-12552.	2.8	19

#	Article	IF	Citations
37	Astrochemistry Examples in the Classroom. Journal of Chemical Education, 2006, 83, 1611.	2.3	18
38	Infrared Spectra and Radiation Stability of H2O2 Ices Relevant to Europa. Astrobiology, 2006, 6, 483-489.	3.0	18
39	Interstellar Ices and Radiation-induced Oxidations of Alcohols. Astrophysical Journal, 2018, 857, 89.	4.5	17
40	Propynal, an interstellar molecule with an exceptionally strong C \$equiv\$ C infrared band – laboratory infrared data and applications. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4009-4017.	4.4	16
41	Giant-planet chemistry: Ammonium hydrosulfide (NH4SH), its IR spectra and thermal and radiolytic stabilities. Icarus, 2015, 258, 181-191.	2.5	15
42	Preparation, identification, and low-temperature infrared spectra of two elusive crystalline nitrile ices. Icarus, 2020, 338, 113548.	2.5	15
43	Laboratory Studies of Astronomical Ices: Reaction Chemistry and Spectroscopy. Accounts of Chemical Research, 2021, 54, 280-290.	15.6	15
44	The radiation stability of glycine in solid CO2 \hat{a} \in In situ laboratory measurements with applications to Mars. Icarus, 2015, 252, 466-472.	2.5	13
45	Propanal, an interstellar aldehyde – first infrared band strengths and other properties of the amorphous and crystalline forms. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4606-4615.	4.4	13
46	Infrared spectra and optical constants of astronomical ices: IV. Benzene and pyridine. Icarus, 2022, 377, 114899.	2.5	13
47	Production of Complex Molecules in Astrophysical Ices. Proceedings of the International Astronomical Union, 2005, 1, 247.	0.0	12
48	Thermal regeneration of sulfuric acid hydrates after irradiation. Icarus, 2012, 219, 561-566.	2.5	12
49	WHAT IS EATING OZONE? THERMAL REACTIONS BETWEEN SO ₂ AND O ₃ : IMPLICATIONS FOR ICY ENVIRONMENTS. Astrophysical Journal Letters, 2016, 833, L9.	8.3	11
50	Radiation chemistry of solid acetone in the interstellar medium – a new dimension to an old problem. Physical Chemistry Chemical Physics, 2018, 20, 5389-5398.	2.8	11
51	Descent without Modification? The Thermal Chemistry of H ₂ O ₂ on Europa and Other Icy Worlds. Astrobiology, 2015, 15, 453-461.	3.0	10
52	Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH). Icarus, 2018, 302, 418-425.	2.5	10
53	Infrared intensities and molar refraction of amorphous dimethyl carbonate – comparisons to four interstellar molecules. Physical Chemistry Chemical Physics, 2019, 21, 11284-11289.	2.8	10
54	Infrared band strengths for amorphous and crystalline methyl propionate, a candidate interstellar molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 216-221.	3.9	10

#	Article	IF	CITATIONS
55	Hydroxylation of Apollo 17 Soil Sample 78421 by Solar Wind Protons. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006845.	3.6	10
56	Crystalline ices $\hat{a} \in \hat{a}$ Densities and comparisons for planetary and interstellar applications. Icarus, 2022, 373, 114799.	2.5	9
57	Ammonia Ices Revisited: New IR Intensities and Optical Constants for Solid NH ₃ . Astrophysical Journal, 2022, 925, 156.	4.5	8
58	Benzene Vapor Pressures at Titan Temperatures: First Microbalance Results. Planetary Science Journal, 2022, 3, 120.	3.6	8
59	A New Method for Measuring Infrared Band Strengths in H ₂ O Ices: First Results for OCS, H ₂ S, and SO ₂ . Astrophysical Journal Letters, 2022, 931, L4.	8.3	8
60	The Radiation Stability of Thymine in Solid H ₂ O. Astrobiology, 2020, 20, 956-963.	3.0	7
61	Solid-State Isomerization and Infrared Band Strengths of Two Conformational Isomers of Cyclopropanecarboxaldehyde, a Candidate Interstellar Molecule. ACS Earth and Space Chemistry, 2019, 3, 1182-1188.	2.7	6
62	Infrared band strengths and other properties of amorphous and crystalline dimethyl ether. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118217.	3.9	6
63	Molecular identifications in experiments with astronomical ice analogues: new data, old strategies, and the N2Â+Âacetone system. Monthly Notices of the Royal Astronomical Society, 2019, 485, 861-871.	4.4	5
64	Radiolytic Destruction of Uracil in Interstellar and Solar System Ices. Astrobiology, 2021, , .	3.0	5
65	N ₂ Chemistry in Interstellar and Planetary Ices: Radiation-driven Oxidation. Astrophysical Journal, 2018, 867, 160.	4.5	4
66	Infrared Spectral Intensities of Amine Ices, Precursors to Amino Acids. Astrobiology, 2022, 22, 452-461.	3.0	4
67	Infrared spectra of benzene ices: Reexamination and comparison of two recent papers and the literature. Icarus, 2022, 384, 115091.	2.5	2
68	Mid-infrared spectra of dipropargyl ether ices revisited. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118206.	3.9	1
69	Infrared Spectra and Intensities of Amorphous and Crystalline Allene. ACS Earth and Space Chemistry, 2022, 6, 1163-1170.	2.7	1
70	Radiation-induced D/H Exchange Rate Constants in Aliphatics Embedded in Water Ice. Astrophysical Journal, 2022, 929, 176.	4. 5	1