Zi-Bing Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7427621/publications.pdf Version: 2024-02-01

71-RINC LIN

#	Article	IF	CITATIONS
1	The association of myopia progression with the morphological changes of optic disc and β-peripapillary atrophy in primary school students. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 677-687.	1.9	8
2	Human retinal pigment epithelial cells. Cell Proliferation, 2022, 55, e13153.	5.3	5
3	Requirements for humanâ€induced pluripotent stem cells. Cell Proliferation, 2022, 55, e13182.	5.3	5
4	Association Between Color Vision Deficiency and Myopia in Chinese Children Over a Five-Year Period. , 2022, 63, 2.		3
5	miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
6	New loci for refractive errors and ocular biometric parameters in young Chinese Han adults. Science China Life Sciences, 2022, 65, 2050-2061.	4.9	6
7	CLEC3B is a novel causative gene for macular-retinal dystrophy. Genetics in Medicine, 2022, 24, 1249-1260.	2.4	2
8	MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation. IScience, 2022, 25, 104058.	4.1	1
9	Mutation of SLC7A14 causes auditory neuropathy and retinitis pigmentosa mediated by lysosomal dysfunction. Science Advances, 2022, 8, eabk0942.	10.3	7
10	ldentification of a New Mutation p.P88L in Connexin 50 Associated with Dominant Congenital Cataract. Frontiers in Cell and Developmental Biology, 2022, 10, 794837.	3.7	5
11	Functional microglia derived from human pluripotent stem cells empower retinal organs. Science China Life Sciences, 2022, 65, 1057-1071.	4.9	16
12	Therapeutic Effects of Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on a Murine Model of Acute Type-2-Dominated Airway Inflammation. Stem Cell Reviews and Reports, 2022, 18, 2939-2951.	3.8	5
13	Phenotype-Based Genetic Analysis Reveals Missing Heritability of <i>ABCA4</i> -Related Retinopathy: Deep Intronic Variants and Copy Number Variations. , 2022, 63, 5.		5
14	From retinal organoids to "retinal organ". Scientia Sinica Vitae, 2022, , .	0.3	0
15	<i>USH2A</i> variants in Chinese patients with Usher syndrome type II and non-syndromic retinitis pigmentosa. British Journal of Ophthalmology, 2021, 105, 694-703.	3.9	22
16	The road to restore vision with photoreceptor regeneration. Experimental Eye Research, 2021, 202, 108283.	2.6	21
17	Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. Annals of Translational Medicine, 2021, 9, 245-245.	1.7	17
18	Genotype-Phenotype Analysis and Mutation Spectrum in a Cohort of Chinese Patients With Congenital Nystagmus. Frontiers in Cell and Developmental Biology, 2021, 9, 627295.	3.7	3

#	Article	IF	CITATIONS
19	Circular RNAs in the Central Nervous System. Frontiers in Molecular Biosciences, 2021, 8, 629593.	3.5	21
20	Eyes on coronavirus. Stem Cell Research, 2021, 51, 102200.	0.7	18
21	Investigation of Macular Choroidal Thickness and Blood Flow Change by Optical Coherence Tomography Angiography After Posterior Scleral Reinforcement. Frontiers in Medicine, 2021, 8, 658259.	2.6	13
22	Polygenic Risk Scores have high diagnostic capacity in ankylosing spondylitis. Annals of the Rheumatic Diseases, 2021, 80, 1168-1174.	0.9	49
23	Directed Induction of Retinal Organoids from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2021, , .	0.3	7
24	Genetic Screening Revealed Latent Keratoconus in Asymptomatic Individuals. Frontiers in Cell and Developmental Biology, 2021, 9, 650344.	3.7	6
25	Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Science Advances, 2021, 7, .	10.3	19
26	Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet Journal of Rare Diseases, 2021, 16, 278.	2.7	6
27	Modeling retinitis pigmentosa through patient-derived retinal organoids. STAR Protocols, 2021, 2, 100438.	1.2	10
28	Genotype Profile of Global EYS-Associated Inherited Retinal Dystrophy and Clinical Findings in a Large Chinese Cohort. Frontiers in Cell and Developmental Biology, 2021, 9, 634220.	3.7	0
29	Modeling human retinoblastoma using embryonic stem cell-derived retinal organoids. STAR Protocols, 2021, 2, 100444.	1.2	10
30	Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Frontiers in Cell and Developmental Biology, 2021, 9, 645501.	3.7	7
31	Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules, 2021, 11, 987.	4.0	15
32	miRâ€183 and miRâ€96 orchestrate both glucose and fat utilization in skeletal muscle. EMBO Reports, 2021, 22, e52247.	4.5	7
33	Retinal Degeneration Caused by Ago2 Disruption. , 2021, 62, 14.		7
34	Patient iPSC-derived retinal organoids: Observable retinal diseases in-a-dish. Histology and Histopathology, 2021, 36, 705-710.	0.7	3
35	Mitochondrial Mutations in Ethambutol-Induced Optic Neuropathy. Frontiers in Cell and Developmental Biology, 2021, 9, 754676.	3.7	3
36	Retinal organoids as models for development and diseases. Cell Regeneration, 2021, 10, 33.	2.6	19

#	Article	IF	CITATIONS
37	Circular Rims2 Deficiency Causes Retinal Degeneration. Advanced Biology, 2021, 5, e2100906.	2.5	6
38	Clinical Features and Natural History in a Cohort of Chinese Patients with RPE65-Associated Inherited Retinal Dystrophy. Journal of Clinical Medicine, 2021, 10, 5229.	2.4	1
39	The Impact of Study-at-Home During the COVID-19 Pandemic on Myopia Progression in Chinese Children. Frontiers in Public Health, 2021, 9, 720514.	2.7	19
40	ä,å $^{1}/_{2}$ çœ $^{1}/_{4}$ ç§ʻ领域å ¹² 细胞å† ç "ŸåŒ»å¦çŽ°çŠ¶åŠå±•望. Scientia Sinica Vitae, 2021, , .	0.3	0
41	Implantable collamer lens versus small incision lenticule extraction for high myopia correction: A systematic review and meta-analysis. BMC Ophthalmology, 2021, 21, 450.	1.4	7
42	Mutational screening of , , , , , and in a Chinese cohort of 103 patients with nonsyndromic high myopia Molecular Vision, 2021, 27, 706-717.	1.1	1
43	Circulating S100A8/A9 Levels Reflect Intraocular Inflammation in Uveitis Patients. Ocular Immunology and Inflammation, 2020, 28, 133-141.	1.8	8
44	The Circular RNome of Developmental Retina in Mice. Molecular Therapy - Nucleic Acids, 2020, 19, 339-349.	5.1	24
45	Mutation spectrum and genotypeâ€phenotype correlation of inherited retinal dystrophy in Taiwan. Clinical and Experimental Ophthalmology, 2020, 48, 486-499.	2.6	15
46	Generation of Nonhuman Primate Model of Cone Dysfunction through In Situ AAV-Mediated CNGB3 Ablation. Molecular Therapy - Methods and Clinical Development, 2020, 18, 869-879.	4.1	16
47	Generation of three human iPSC lines from a retinitis pigmentosa family with SLC7A14 mutation. Stem Cell Research, 2020, 49, 102075.	0.7	3
48	COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Research and Therapy, 2020, 11, 366.	5.5	92
49	Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33628-33638.	7.1	74
50	Abundant Neural circRNA Cdr1as Is Not Indispensable for Retina Maintenance. Frontiers in Cell and Developmental Biology, 2020, 8, 565543.	3.7	5
51	Bioenergetic Crosstalk between Mesenchymal Stem Cells and various Ocular Cells through the intercellular trafficking of Mitochondria. Theranostics, 2020, 10, 7260-7272.	10.0	99
52	Genomewide Association Study of Acute Anterior Uveitis Identifies New Susceptibility Loci. , 2020, 61, 3.		43
53	Emerging roles of nonâ€coding RNAs in retinal diseases: A review. Clinical and Experimental Ophthalmology, 2020, 48, 1085-1101.	2.6	21
54	Disease Activity-Associated Alteration of mRNA m5 C Methylation in CD4+ T Cells of Systemic Lupus Erythematosus. Frontiers in Cell and Developmental Biology, 2020, 8, 430.	3.7	55

#	Article	IF	CITATIONS
55	Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. Journal of Leukocyte Biology, 2020, 108, 967-981.	3.3	19
56	Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. , 2020, 61, 12.		16
57	Patient-Specific Retinal Organoids Recapitulate Disease Features of Late-Onset Retinitis Pigmentosa. Frontiers in Cell and Developmental Biology, 2020, 8, 128.	3.7	66
58	Towards stem cell-based neuronal regeneration for glaucoma. Progress in Brain Research, 2020, 257, 99-118.	1.4	13
59	Geographic Difference Shaped Human Ocular Surface Metagenome of Young Han Chinese From Beijing, Wenzhou, and Guangzhou Cities. , 2020, 61, 47.		29
60	Variant Profiling of a Large Cohort of 138 Chinese Families With Autosomal Dominant Retinitis Pigmentosa. Frontiers in Cell and Developmental Biology, 2020, 8, 629994.	3.7	11
61	ATP1A3 mutation as a candidate cause ofÂautosomal dominant cone-rod dystrophy. Human Genetics, 2020, 139, 1391-1401.	3.8	4
62	Nonhuman Primate Model of Oculocutaneous Albinism with <i>TYR</i> and <i>OCA2</i> Mutations. Research, 2020, 2020, 1658678.	5.7	8
63	Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. National Science Review, 2019, 6, 1201-1222.	9.5	30
64	Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 2019, 22, 1345-1356.	14.8	144
65	Relationship Between Cone Loss and Microvasculature Change in Retinitis Pigmentosa. , 2019, 60, 4520.		11
66	An overview of myopia genetics. Experimental Eye Research, 2019, 188, 107778.	2.6	79
67	Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. , 2019, 60, 4052.		24
68	Functional characterization of <i>CEP250</i> variant identified in nonsyndromic retinitis pigmentosa. Human Mutation, 2019, 40, 1039-1045.	2.5	18
69	A new subset of small stem cells in bovine bone marrow stromal cell populations. Journal of Cellular Biochemistry, 2019, 120, 13881-13892.	2.6	1
70	Circular RNAs in human and vertebrate neural retinas. RNA Biology, 2019, 16, 821-829.	3.1	26
71	Deletion of miR-182 Leads to Retinal Dysfunction in Mice. , 2019, 60, 1265.		26

72 Wholeâ€exome sequencing identified <i>ARL2</i> as a novel candidate gene for MRCS (microcornea,) Tj ETQq0 0 0 grgBT /Overlock 10 T

#	Article	IF	CITATIONS
73	Elevated Plasma Levels of Drebrin in Glaucoma Patients With Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 326.	2.8	2
74	Slc7a14 Is Indispensable in Zebrafish Retinas. Frontiers in Cell and Developmental Biology, 2019, 7, 333.	3.7	13
75	Stemming retinal regeneration with pluripotent stem cells. Progress in Retinal and Eye Research, 2019, 69, 38-56.	15.5	148
76	Unique presentation of congenital cataract concurrent with microcornea, microphthalmia plus posterior capsule defect in monozygotic twins caused by a novel GJA8 mutation. Eye, 2019, 33, 686-689.	2.1	3
77	Mutation of IPO13 causes recessive ocular coloboma, microphthalmia, and cataract. Experimental and Molecular Medicine, 2018, 50, 1-11.	7.7	21
78	Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Reports, 2018, 10, 1267-1281.	4.8	183
79	Genotype-Phenotype Association Study Reveals CFI-Rs13104777 to be a Protective Genetic Marker Against Acute Anterior Uveitis. Ocular Immunology and Inflammation, 2018, 26, 51-56.	1.8	3
80	Retinal miRNAs variations in a large cohort of inherited retinal disease. Ophthalmic Genetics, 2018, 39, 175-179.	1.2	10
81	Identification of <i>de novo</i> germline mutations and causal genes for sporadic diseases using trioâ€based wholeâ€exome/genome sequencing. Biological Reviews, 2018, 93, 1014-1031.	10.4	35
82	Versatile Genome Engineering Techniques Advance Human Ocular Disease Researches in Zebrafish. Frontiers in Cell and Developmental Biology, 2018, 6, 75.	3.7	17
83	Association of IL33 and IL1RAP Polymorphisms With Acute Anterior Uveitis. Current Molecular Medicine, 2018, 17, 471-477.	1.3	12
84	Nonvectorial responses in photoreceptor cells stimulated by electrical fields. Scientia Sinica Vitae, 2018, 48, 544-555.	0.3	0
85	Identification and population history of CYP4V2 mutations in patients with Bietti crystalline corneoretinal dystrophy. European Journal of Human Genetics, 2017, 25, 461-471.	2.8	23
86	Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9. Scientific Reports, 2017, 7, 43062.	3.3	20
87	Mutational screening of SLC39A5, LEPREL1 and LRPAP1 in a cohort of 187 high myopia patients. Scientific Reports, 2017, 7, 1120.	3.3	21
88	miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6376-6381.	7.1	73
89	Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4219-4224.	7.1	77
90	Genetic signatures of high-altitude adaptation in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4189-4194.	7.1	181

#	Article	IF	CITATIONS
91	REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Human Molecular Genetics, 2017, 26, 2218-2230.	2.9	23
92	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	12.8	93
93	Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Scientific Reports, 2017, 7, 9064.	3.3	11
94	mirDNMR: a gene-centered database of background <i>de novo</i> mutation rates in human. Nucleic Acids Research, 2017, 45, D796-D803.	14.5	33
95	Mutations in <i>LRP5</i> , <i>FZD4</i> , <i>TSPAN12</i> , <i>NDP</i> , <i>ZNF408</i> , or <i>KIF11 </i> Genes Account for 38.7% of Chinese Patients With Familial Exudative Vitreoretinopathy. , 2017, 58, 2623.		58
96	Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. Genome Medicine, 2017, 9, 97.	8.2	23
97	Toll-Like Receptor 3 Activation Initiates Photoreceptor Cell Death In Vivo and In Vitro. , 2017, 58, 801.		8
98	Genome-Wide Detection of Copy Number Variations in Unsolved Inherited Retinal Disease. , 2017, 58, 424.		25
99	A Naturally-Derived Compound Schisandrin B Enhanced Light Sensation in the pde6c Zebrafish Model of Retinal Degeneration. PLoS ONE, 2016, 11, e0149663.	2.5	27
100	miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle. Cell Reports, 2016, 16, 757-768.	6.4	51
101	Targeted exome sequencing identified two novel truncation mutations in GPR98 causing Usher syndrome. Clinical and Experimental Ophthalmology, 2016, 44, 197-199.	2.6	10
102	<i>CFHR2</i> â€rs2986127 as a genetic protective marker for acute anterior uveitis in Chinese patients. Journal of Gene Medicine, 2016, 18, 193-198.	2.8	6
103	Association of CD59 and CFH polymorphisms with acute anterior uveitis in Chinese population. Eye, 2016, 30, 1452-1457.	2.1	4
104	Novel CHM mutations identified in Chinese families with Choroideremia. Scientific Reports, 2016, 6, 35360.	3.3	11
105	Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families. Scientific Reports, 2016, 6, 35414.	3.3	12
106	Molecular genetic analysis and phenotypic characteristics of a consanguineous family with glycogen storage disease type Ia. Molecular Medicine Reports, 2016, 14, 3251-3254.	2.4	3
107	Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus. BMJ Open, 2016, 6, e010649.	1.9	11
108	Loss of miRâ€182 affects Bâ€cell extrafollicular antibody response. Immunology, 2016, 148, 140-149.	4.4	18

#	Article	IF	CITATIONS
109	CFI-rs7356506 polymorphisms associated with Vogt-Koyanagi-Harada syndrome. Molecular Vision, 2016, 22, 9-17.	1.1	5
110	Molecular screening of the LPCAT1 gene in patients with retinitis pigmentosa without defined mutations in known retinitis pigmentosa genes. Molecular Medicine Reports, 2015, 12, 5983-5988.	2.4	3
111	Identification of novel mutations by targeted exome sequencing and the genotype-phenotype assessment of patients with achromatopsia. Journal of Translational Medicine, 2015, 13, 334.	4.4	8
112	The Association between Maternal Reproductive Age and Progression of Refractive Error in Urban Students in Beijing. PLoS ONE, 2015, 10, e0139383.	2.5	4
113	Response to Heller and Bolz. Genetics in Medicine, 2015, 17, 508-509.	2.4	0
114	Lysosomal storage disease in the brain: mutations of the β-mannosidase gene identified in autosomal dominant nystagmus. Genetics in Medicine, 2015, 17, 971-979.	2.4	26
115	Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing. Genetics in Medicine, 2015, 17, 307-311.	2.4	52
116	Drug-inducible synergistic gene silencing with multiple small hairpin RNA molecules for gene function study in animal model. Transgenic Research, 2015, 24, 309-317.	2.4	0
117	Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genetics in Medicine, 2015, 17, 271-278.	2.4	177
118	Comprehensive Molecular Diagnosis of Bardet-Biedl Syndrome by High-Throughput Targeted Exome Sequencing. PLoS ONE, 2014, 9, e90599.	2.5	42
119	Molecular Diagnosis of Putative Stargardt Disease by Capture Next Generation Sequencing. PLoS ONE, 2014, 9, e95528.	2.5	38
120	Whole Exome Sequencing Reveals Genetic Predisposition in a Large Family with Retinitis Pigmentosa. BioMed Research International, 2014, 2014, 1-6.	1.9	9
121	CFI-rs7356506 is a genetic protective factor for acute anterior uveitis in Chinese patients. British Journal of Ophthalmology, 2014, 98, 1592-1596.	3.9	15
122	'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau047-bau047.	3.0	46
123	SLC7A14 linked to autosomal recessive retinitis pigmentosa. Nature Communications, 2014, 5, 3517.	12.8	82
124	A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials, 2014, 35, 9777-9788.	11.4	117
125	A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family. Scientific Reports, 2014, 4, 6936.	3.3	8
126	Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Scientific Reports, 2014, 4, 5405.	3.3	187

#	Article	IF	CITATIONS
127	Identification of Three Novel Mutations in the FRMD7 Gene for X-linked Idiopathic Congenital Nystagmus. Scientific Reports, 2014, 4, 3745.	3.3	14
128	Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts. Scientific Reports, 2014, 4, 4121.	3.3	30
129	Targeted Exome Sequencing Identified Novel USH2A Mutations in Usher Syndrome Families. PLoS ONE, 2013, 8, e63832.	2.5	58
130	VEGF-Mediated Proliferation of Human Adipose Tissue-Derived Stem Cells. PLoS ONE, 2013, 8, e73673.	2.5	33
131	Integration-Free Induced Pluripotent Stem Cells Derived from Retinitis Pigmentosa Patient for Disease Modeling. Stem Cells Translational Medicine, 2012, 1, 503-509.	3.3	93
132	Embryonic stem-cell-derived retinal pigment epithelial cells for macular degeneration. Lancet, The, 2012, 379, 2050.	13.7	5
133	Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Müller cells. Experimental Neurology, 2012, 238, 192-208.	4.1	65
134	Generation of retinal cells from pluripotent stem cells. Progress in Brain Research, 2012, 201, 171-181.	1.4	30
135	Novel RPGR-ORF15 mutations in X-linked retinitis pigmentosa patients. Neuroscience Letters, 2011, 500, 16-19.	2.1	2
136	Modeling Retinal Degeneration Using Patient-Specific Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e17084.	2.5	204
137	Use of Lectins to Enrich Mouse ES-Derived Retinal Progenitor Cells for the Purpose of Transplantation Therapy. Cell Transplantation, 2010, 19, 9-19.	2.5	16
138	Detection of localized retinal malfunction in retinal degeneration model using a multielectrode array system. Journal of Neuroscience Research, 2009, 87, 2175-2182.	2.9	22
139	Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. Journal of Genetics, 2009, 88, 417-424.	0.7	59
140	In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. Journal of Cell Science, 2009, 122, 3169-3179.	2.0	393
141	Targeted deletion of miR-182, an abundant retinal microRNA. Molecular Vision, 2009, 15, 523-33.	1.1	78
142	Trinucleotide expansions in the SCA7 gene in a large family with spinocerebellar ataxia and craniocervical dystonia. Neuroscience Letters, 2008, 434, 230-233.	2.1	13
143	Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. Journal of Medical Genetics, 2008, 45, 465-472.	3.2	67
144	Macular Hole Formation in Patients With Retinitis Pigmentosa and Prognosis of Pars Plana Vitrectomy. Retina, 2008, 28, 610-614.	1.7	34

#	Article	IF	CITATIONS
145	Allelic Copy Number Variation in <i>FSCN2</i> Detected Using Allele-Specific Genotyping and Multiplex Real-Time PCRs. , 2008, 49, 3799.		10
146	Identification of a Novel RPGR Exon ORF15 Mutation in a Family With X-linked Retinitis Pigmentosa. JAMA Ophthalmology, 2007, 125, 1407.	2.4	6
147	Somatic and gonadal mosaicism in X-linked retinitis pigmentosa. American Journal of Medical Genetics, Part A, 2007, 143A, 2544-2548.	1.2	24
148	A Novel Truncating Rs1 Mutation Associated With X-Linked Juvenile Retinoschisis. Japanese Journal of Ophthalmology, 2007, 51, 71-73.	1.9	2
149	Clinical and Molecular Findings in Three Japanese Patients with Crystalline Retinopathy. Japanese Journal of Ophthalmology, 2006, 50, 426-431.	1.9	36
150	RCC1-Like Domain and ORF15: Essentials in RPGR Gene. , 2006, 572, 29-33.		6
151	Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations. Molecular Vision, 2006, 12, 1167-74.	1.1	31
152	Novel deletion spanning RCC1-like domain of RPGR in Japanese X-linked retinitis pigmentosa family. Molecular Vision, 2005, 11, 535-41.	1.1	6
153	Mutation in CEP250 Cause Non-Syndromic Retinitis Pigmentosa. SSRN Electronic Journal, 0, , .	0.4	0
154	Retinal Organoids over the Decade. , 0, , .		1

Retinal Organoids over the Decade. , 0, , . 154