Christopher Lowry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7426345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrologic evaluation of a poplar phytoextraction system. International Journal of Phytoremediation, 2022, 24, 145-155.	3.1	0
2	Potential impacts of climate change on an aquifer in the arid Altiplano, northern Chile: The case of the protected wetlands of the Salar del Huasco basin. Journal of Hydrology: Regional Studies, 2022, 39, 100996.	2.4	9
3	Applied Groundwater Modelling for Water Resource Management and Protection. Water (Switzerland), 2022, 14, 1142.	2.7	4
4	The Role of Realistic Channel Geometry Representation in Hydrological Model Predictions. Journal of the American Water Resources Association, 2021, 57, 222-240.	2.4	5
5	Examining the utility of continuously quantified Darcy fluxes through the use of periodic temperature time series. Journal of Hydrology, 2021, 595, 125675.	5.4	6
6	Exploring the Use of Decision Tree Methodology in Hydrology Using Crowdsourced Data. Journal of the American Water Resources Association, 2021, 57, 256-266.	2.4	5
7	ls Citizen Science Dead?. Environmental Science & Technology, 2021, 55, 4194-4196.	10.0	8
8	Mechanisms for engaging social systems in freshwater science research. Freshwater Science, 2021, 40, 245-251.	1.8	7
9	Opportunities for crowdsourcing in urban flood monitoring. Environmental Modelling and Software, 2021, 143, 105124.	4.5	21
10	Vulnerability of water resources under a changing climate and human activity in the lower Great Lakes region. Hydrological Processes, 2021, 35, e14440.	2.6	10
11	Citizen Science, Crowdsourcing, and Social Media Advance Our Understanding and Conservation of Inland Waters. , 2021, , .		0
12	Improving Hydrological Models With the Assimilation of Crowdsourced Data. Water Resources Research, 2020, 56, e2019WR026325.	4.2	19
13	Vertically Integrated Hydraulic Conductivity: A New Parameter for Groundwaterâ€&urface Water Analysis. Ground Water, 2019, 57, 727-736.	1.3	6
14	Growing Pains of Crowdsourced Stream Stage Monitoring Using Mobile Phones: The Development of CrowdHydrology. Frontiers in Earth Science, 2019, 7, .	1.8	42
15	Limits on Groundwaterâ€Surface Water Fluxes Derived from Temperature Time Series: Defining Resolutionâ€Based Thresholds. Water Resources Research, 2019, 55, 10678-10689.	4.2	10
16	USING CITIZEN SCIENCE AS A CORE TOOL FOR WATER RESOURCE MANAGEMENT AND FORECASTING: CLOSING THE PROFESSIONAL AND CITIZEN SCIENCE GAP. , 2019, , .		0
17	IMPROVING ESTIMATES OF STREAMBED WETTED PERIMETER FROM UAV: A SYSTEM FOR THE REMOTE QUANTIFICATION OF STREAM DISCHARGE. , 2019, , .		0
18	EXPLORING GROUNDWATER SURFACE WATER-INTERACTIONS USING DRONE BASED DIFFERENTIAL STREAM		0

CHRISTOPHER LOWRY

#	Article	IF	CITATIONS
19	Groundwater drainage from fissures as a source for lahars. Bulletin of Volcanology, 2018, 80, 1.	3.0	11
20	QUANTIFYING GROUNDWATER–SURFACE WATER EXCHANGE FROM LOW-ALTITUDE REMOTE SENSING USING LARGE-SCALE PARTICLE IMAGE VELOCIMETRY. , 2018, , .		0
21	LOW FLUX LIMITATIONS ON THE USE OF HEAT AS A TRACER IN GROUNDWATER-SURFACE WATER INTERACTIONS. , 2018, , .		0
22	Impact of complex aquifer geometry on groundwater storage in highâ€elevation meadows of the Sierra Nevada Mountains, CA. Hydrological Processes, 2017, 31, 1863-1875.	2.6	10
23	TRACKING NUTRIENT FLUXES IN GROUNDWATER AND SURFACE WATER ON THE EASTERN SHORE OF LAKE ERIE. , 2017, , .		0
24	Hyporheic exchange controlled by dynamic hydrologic boundary conditions. Geophysical Research Letters, 2016, 43, 4408-4417.	4.0	58
25	Temporal Hyporheic Zone Response to Water Table Fluctuations. Ground Water, 2016, 54, 274-285.	1.3	35
26	Response of the hyporheic zone to transient groundwater fluctuations on the annual and storm event time scales. Water Resources Research, 2016, 52, 5301-5321.	4.2	33
27	HYPORHEIC EXCHANGE CONTROLLED BY DYNAMIC STREAM AND HILLSLOPE FLUCTUATIONS. , 2016, , .		0
28	QUANTIFYING ROOT DISTRIBUTION AND GRAIN SIZE ANALYSIS IN WETLAND PLANT COMMUNITIES WITH IMPLICATIONS FOR ROOT WATER UPTAKE. , 2016, , .		0
29	Simulating the effects of a beaver dam on regional groundwater flow through a wetland. Journal of Hydrology: Regional Studies, 2015, 4, 675-685.	2.4	8
30	Focused Groundwater Controlled Feedbacks into the Hyporheic Zone During Baseflow Recession. Ground Water, 2015, 53, 217-226.	1.3	5
31	Instream Restoration to Improve the Ecohydrologic Function of a Subalpine Meadow: Preâ€implementation Modeling with HECâ€RAS. Journal of the American Water Resources Association, 2014, 50, 1033-1050.	2.4	5
32	Quantifying the potential effects of high-volume water extractions on water resources during natural gas development: Marcellus Shale, NY. Journal of Hydrology: Regional Studies, 2014, 1, 1-16.	2.4	22
33	Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmeltâ€dominated upper Tuolumne Basin, Sierra Nevada. Hydrological Processes, 2014, 28, 3896-3918.	2.6	52
34	CrowdHydrology: Crowdsourcing Hydrologic Data and Engaging Citizen Scientists. Ground Water, 2013, 51, 151-156.	1.3	149
35	Locating and quantifying spatially distributed groundwater/surface water interactions using temperature signals with paired fiberâ€optic cables. Water Resources Research, 2013, 49, 7670-7680.	4.2	35
36	Social.Water—A crowdsourcing tool for environmental data acquisition. Computers and Geosciences, 2012, 49, 164-169.	4.2	56

CHRISTOPHER LOWRY

#	Article	IF	CITATIONS
37	Groundwater controls on vegetation composition and patterning in mountain meadows. Water Resources Research, 2011, 47, .	4.2	71
38	Linking snowmeltâ€derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrological Processes, 2010, 24, 2821-2833.	2.6	37
39	Groundwaterâ€dependent vegetation: Quantifying the groundwater subsidy. Water Resources Research, 2010, 46, .	4.2	65
40	Ground penetrating radar and spring formation in a groundwater dominated peat wetland. Journal of Hydrology, 2009, 373, 68-79.	5.4	61
41	COMSOL Multiphysics: A Novel Approach to Ground Water Modeling. Ground Water, 2009, 47, 480-487.	1.3	121
42	Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resources Research, 2007, 43, .	4.2	179
43	An Assessment of Aquifer Storage Recovery Using Ground Water Flow Models. Ground Water, 2006, 44, 060707065613003-???.	1.3	56