Tammo Steenhuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7424378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 2014, 28, 5613-5623.	2.6	302
2	Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology, 2008, 348, 279-291.	5.4	239
3	A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 2003, 17, 2011-2031.	2.6	208
4	SCS Runoff Equation Revisited for Variable-Source Runoff Areas. Journal of Irrigation and Drainage Engineering - ASCE, 1995, 121, 234-238.	1.0	204
5	Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng County, Hebei Province, 1949–2000. Hydrological Processes, 2004, 18, 2289-2302.	2.6	181
6	Preferential Flow in Waterâ€Repellent Sands. Soil Science Society of America Journal, 1998, 62, 1185-1190.	2.2	180
7	A GIS-based variable source area hydrology model. Hydrological Processes, 1999, 13, 805-822.	2.6	179
8	Incorporating variable source area hydrology into a curveâ€numberâ€based watershed model. Hydrological Processes, 2007, 21, 3420-3430.	2.6	148
9	Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation. Hydrological Processes, 2004, 18, 2757-2771.	2.6	138
10	Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrological Processes, 2010, 24, 3747-3758.	2.6	121
11	Identifying hydrologically sensitive areas: Bridging the gap between science and application. Journal of Environmental Management, 2006, 78, 63-76.	7.8	115
12	Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. Ecohydrology, 2010, 3, 497-508.	2.4	109
13	Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrology and Earth System Sciences, 2014, 18, 4871-4881.	4.9	109
14	Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model. Water Resources Research, 1999, 35, 3419-3428.	4.2	105
15	Development and application of a physically based landscape water balance in the SWAT model. Hydrological Processes, 2011, 25, 915-925.	2.6	99
16	Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. Journal of Hydrology and Hydromechanics, 2015, 63, 210-219.	2.0	96
17	Performance of in situ rainwater conservation tillage techniques on dry spell mitigation and erosion control in the drought-prone North Wello zone of the Ethiopian highlands. Soil and Tillage Research, 2007, 97, 19-36.	5.6	92
18	Estimation of Small Reservoir Storage Capacities with Remote Sensing in the Brazilian Savannah Region. Water Resources Management, 2012, 26, 873-882.	3.9	90

#	Article	IF	CITATIONS
19	Combined effect of soil bund with biological soil and water conservation measures in the northwestern Ethiopian highlands. Ecohydrology and Hydrobiology, 2014, 14, 192-199.	2.3	88
20	Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrological Processes, 2009, 23, 3728-3737.	2.6	87
21	Poreâ€Scale Visualization of Colloid Transport and Retention in Partly Saturated Porous Media. Vadose Zone Journal, 2004, 3, 444-450.	2.2	85
22	Rainfallâ€discharge relationships for a monsoonal climate in the Ethiopian highlands. Hydrological Processes, 2008, 22, 1059-1067.	2.6	81
23	Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed. Ecohydrology, 2010, 3, 457-466.	2.4	81
24	Comparison of Ground Penetrating Radar and Timeâ€Domain Reflectometry as Soil Water Sensors. Soil Science Society of America Journal, 1998, 62, 1237-1239.	2.2	79
25	Untapped Potential: Opportunities and Challenges for Sustainable Bioenergy Production from Marginal Lands in the Northeast USA. Bioenergy Research, 2015, 8, 482-501.	3.9	79
26	Preferential Movement of Pesticides and Tracers in Agricultural Soils. Journal of Irrigation and Drainage Engineering - ASCE, 1990, 116, 50-66.	1.0	78
27	Refined conceptualization of TOPMODEL for shallow subsurface flows. Hydrological Processes, 2002, 16, 2041-2046.	2.6	78
28	Suspended sediment concentration–discharge relationships in the (sub-) humid Ethiopian highlands. Hydrology and Earth System Sciences, 2013, 17, 1067-1077.	4.9	78
29	Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma, 2015, 243-244, 115-123.	5.1	78
30	Assessment of surface water irrigation potential in the Ethiopian highlands: The Lake Tana Basin. Catena, 2015, 129, 76-85.	5.0	75
31	Transport and Retention Mechanisms of Colloids in Partially Saturated Porous Media. Vadose Zone Journal, 2005, 4, 184-195.	2.2	72
32	Grain Surfaceâ€Roughness Effects on Colloidal Retention in the Vadose Zone. Vadose Zone Journal, 2009, 8, 11-20.	2.2	72
33	Temporal Variability of Nitrous Oxide from Fertilized Croplands: Hot Moment Analysis. Soil Science Society of America Journal, 2012, 76, 1728-1740.	2.2	71
34	Assessment of soil erosion processes and farmer perception of land conservation in Debre Mewi watershed near Lake Tana, Ethiopia. Ecohydrology and Hydrobiology, 2010, 10, 297-306.	2.3	70
35	Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia. Journal of Hydrology, 2015, 525, 152-164.	5.4	67
36	Transport and Retention Mechanisms of Colloids in Partially Saturated Porous Media. Vadose Zone Journal, 2005, 4, 184.	2.2	65

#	Article	IF	CITATIONS
37	Simple Estimation of Prevalence of Hortonian Flow in New York City Watersheds. Journal of Hydrologic Engineering - ASCE, 2003, 8, 214-218.	1.9	63
38	Capillary retention of colloids in unsaturated porous media. Water Resources Research, 2008, 44, .	4.2	63
39	Eco-hydrological impacts of Eucalyptus in the semi humid Ethiopian Highlands: the Lake Tana Plain. Journal of Hydrology and Hydromechanics, 2013, 61, 21-29b.	2.0	63
40	Noninvasive Time Domain Reflectometry Moisture Measurement Probe. Soil Science Society of America Journal, 1993, 57, 934-936.	2.2	62
41	Dissecting the variable source area concept – Subsurface flow pathways and water mixing processes in a hillslope. Journal of Hydrology, 2012, 420-421, 125-141.	5.4	60
42	Recharge and Groundwater Use in the North China Plain for Six Irrigated Crops for an Eleven Year Period. PLoS ONE, 2015, 10, e0115269.	2.5	58
43	Hydrologic assessment of an urban variable source watershed in the northeast United States. Water Resources Research, 2007, 43, .	4.2	57
44	A Biophysical and Economic Assessment of a Communityâ€based Rehabilitated Gully in the Ethiopian Highlands. Land Degradation and Development, 2016, 27, 270-280.	3.9	56
45	Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed. Soil, 2016, 2, 443-458.	4.9	55
46	Evaluation of spatial interpolation methods for groundwater level in an arid inland oasis, northwest China. Environmental Earth Sciences, 2014, 71, 1911-1924.	2.7	54
47	Preferential Flow and Transport of <i>Cryptosporidium parvum</i> Oocysts through the Vadose Zone: Experiments and Modeling. Vadose Zone Journal, 2004, 3, 262-270.	2.2	53
48	Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena, 2018, 163, 332-341.	5.0	53
49	Application of SMR to Modeling Watersheds in the Catskill Mountains. Environmental Modeling and Assessment, 2004, 9, 77-89.	2.2	51
50	Agricultural <scp>BMP</scp> Effectiveness and Dominant Hydrological Flow Paths: Concepts and a Review. Journal of the American Water Resources Association, 2015, 51, 305-329.	2.4	51
51	Seasonal performance of denitrifying bioreactors in the Northeastern United States: Field trials. Journal of Environmental Management, 2017, 202, 242-253.	7.8	49
52	Analysis of a rural water supply project in three communities in Mali: Participation and sustainability. Natural Resources Forum, 2007, 31, 142-150.	3.6	48
53	Distributed discharge and sediment concentration predictions in the subâ€humid Ethiopian highlands: the Debre Mawi watershed. Hydrological Processes, 2015, 29, 1817-1828.	2.6	48
54	Measurement of groundwater recharge on eastern Long Island, New York, U.S.A Journal of Hydrology, 1985, 79, 145-169.	5.4	47

#	Article	IF	CITATIONS
55	Water accounting for conjunctive groundwater/surface water management: case of the Singkarak–Ombilin River basin, Indonesia. Journal of Hydrology, 2004, 292, 1-22.	5.4	45
56	Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 286-297.	2.8	44
57	Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia. Journal of Hydrology, 2018, 556, 1182-1191.	5.4	44
58	Pore-Scale Visualization of Colloid Transport and Retention in Partly Saturated Porous Media. Vadose Zone Journal, 2004, 3, 444-450.	2.2	43
59	Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines. Advances in Water Resources, 2005, 28, 1083-1090.	3.8	42
60	Detection of glyphosate residues in companion animal feeds. Environmental Pollution, 2018, 243, 1113-1118.	7.5	42
61	High Intensity Xâ€Ray and Tensiometer Measurements in Rapidly Changing Preferential Flow Fields. Soil Science Society of America Journal, 1993, 57, 1188-1192.	2.2	40
62	Characterization of Degraded Soils in the Humid Ethiopian Highlands. Land Degradation and Development, 2017, 28, 1891-1901.	3.9	40
63	The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups. Water, Air, and Soil Pollution, 2005, 160, 41-54.	2.4	39
64	Water use and productivity of two small reservoir irrigation schemes in Ghana's upper east region. Irrigation and Drainage, 2008, 57, 151-163.	1.7	39
65	A Saturation Excess Erosion Model. Transactions of the ASABE, 2013, 56, 681-695.	1.1	39
66	A simple semiâ€distributed water balance model for the Ethiopian highlands. Hydrological Processes, 2009, 23, 3718-3727.	2.6	37
67	Rainâ€onâ€snow runoff events in New York. Hydrological Processes, 2013, 27, 3035-3049.	2.6	37
68	The hydrology of inland valleys in the sub-humid zone of West Africa: rainfall-runoff processes in the M'bé experimental watershed. Hydrological Processes, 2003, 17, 1213-1225.	2.6	36
69	Nitrous Oxide from Heterogeneous Agricultural Landscapes: Source Contribution Analysis by Eddy Covariance and Chambers. Soil Science Society of America Journal, 2011, 75, 1829-1838.	2.2	35
70	Streamflow Responses to Climate Change: Analysis of Hydrologic Indicators in a New York City Water Supply Watershed. Journal of the American Water Resources Association, 2013, 49, 1308-1326.	2.4	35
71	Causes and Controlling Factors of Valley Bottom Gullies. Land, 2019, 8, 141.	2.9	35
72	Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: the Lake Tana basin. Journal of Hydrology and Hydromechanics, 2018, 66, 65-78.	2.0	34

#	Article	IF	CITATIONS
73	Erosion hotspot identification in the sub-humid Ethiopian highlands. Ecohydrology and Hydrobiology, 2019, 19, 146-154.	2.3	34
74	Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area. Agricultural Water Management, 2017, 185, 116-125.	5.6	33
75	Predicting saturationâ€excess runoff distribution with a lumped hillslope model: SWATâ€HS. Hydrological Processes, 2017, 31, 2226-2243.	2.6	33
76	Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Scientific Reports, 2017, 7, 43122.	3.3	33
77	Gully Head Retreat in the Subâ€Humid Ethiopian Highlands: The Eneâ€Chilala Catchment. Land Degradation and Development, 2017, 28, 1579-1588.	3.9	33
78	Gullies, a critical link in landscape soil loss: A case study in the subhumid highlands of Ethiopia. Land Degradation and Development, 2018, 29, 1222-1232.	3.9	33
79	Equation for Describing Solute Transport in Field Soils with Preferential Flow Paths. Soil Science Society of America Journal, 2005, 69, 291-300.	2.2	33
80	Quantifying colloid retention in partially saturated porous media. Water Resources Research, 2006, 42, .	4.2	32
81	Effect of Ionic Strength on the Transport and Retention of Polyacrylamide Microspheres in Reservoir Water Shutoff Treatment. Industrial & Engineering Chemistry Research, 2017, 56, 8158-8168.	3.7	32
82	Suitability and Limitations of ENVISAT ASAR for Monitoring Small Reservoirs in a Semiarid Area. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1536-1547.	6.3	31
83	Revisiting storm runoff processes in the upper Blue Nile basin: The Debre Mawi watershed. Catena, 2016, 143, 47-56.	5.0	31
84	Root reinforcement to soils provided by common Ethiopian highland plants for gully erosion control. Ecohydrology, 2018, 11, e1940.	2.4	31
85	One-Dimensional Model to Evaluate the Performance of Wick Samplers in Soils. Soil Science Society of America Journal, 1995, 59, 88-92.	2.2	30
86	Controls Influencing the Treatment of Excess Agricultural Nitrate with Denitrifying Bioreactors. Journal of Environmental Quality, 2016, 45, 772-778.	2.0	30
87	Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 2019, 338, 159-169.	5.1	30
88	Diversified crop rotations enhance groundwater and economic sustainability of food production. Food and Energy Security, 2021, 10, e311.	4.3	30
89	Preferential Flow and Transport of Oocysts through the Vadose Zone. Vadose Zone Journal, 2004, 3, 262.	2.2	30
90	Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model. Journal of Hydrology and Hydromechanics, 2013, 61, 9-20b.	2.0	29

#	Article	IF	CITATIONS
91	Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake. Science of the Total Environment, 2015, 523, 170-177.	8.0	29
92	Longâ€Term Landscape Changes in the Lake Tana Basin as Evidenced by Delta Development and Floodplain Aggradation in Ethiopia. Land Degradation and Development, 2017, 28, 1820-1830.	3.9	29
93	The link between hydrology and restoration of tidal marshes in the New York/New Jersey Estuary. Wetlands, 2004, 24, 414-425.	1.5	28
94	Modelling variable source area dynamics in a CEAP watershed. Ecohydrology, 2009, 2, 337-349.	2.4	28
95	Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength. Water Resources Research, 2009, 45, .	4.2	28
96	Suitability of Watershed Models to Predict Distributed Hydrologic Response in the Awramba Watershed in Lake Tana Basin. Land Degradation and Development, 2017, 28, 1386-1397.	3.9	28
97	Biohydrology of low flows in the humid Ethiopian highlands: The Gilgel Abay catchment. Biologia (Poland), 2014, 69, 1502-1509.	1.5	26
98	Identifying dissolved phosphorus source areas and predicting transport from an urban watershed using distributed hydrologic modeling. Water Resources Research, 2007, 43, .	4.2	25
99	Impact of urban development on streamflow regime of a Portuguese peri-urban Mediterranean catchment. Journal of Soils and Sediments, 2016, 16, 2580-2593.	3.0	25
100	Sediment Loss Patterns in the Subâ€Humid Ethiopian Highlands. Land Degradation and Development, 2017, 28, 1795-1805.	3.9	25
101	Determination of hydraulic behavior of hillsides with a hillslope infiltrometer. Soil Science Society of America Journal, 2002, 66, 1501-1504.	2.2	24
102	Drying front in a sloping aquifer: Nonlinear effects. Water Resources Research, 2004, 40, .	4.2	24
103	Biocolloid retention in partially saturated soils. Biologia (Poland), 2006, 61, S229-S233.	1.5	24
104	The Hydrological Effects of Lateral Preferential Flow Paths in a Glaciated Watershed in the Northeastern USA. Vadose Zone Journal, 2010, 9, 397-414.	2.2	24
105	Effect of Soil Reduction on Phosphorus Sorption of an Organicâ€Rich Silt Loam. Soil Science Society of America Journal, 2010, 74, 240-249.	2.2	23
106	Sediment concentration rating curves for a monsoonal climate: upper Blue Nile. Soil, 2016, 2, 337-349.	4.9	23
107	Modeling discharge and sediment concentrations after landscape interventions in a humid monsoon climate: The Anjeni watershed in the highlands of Ethiopia. Hydrological Processes, 2017, 31, 1239-1257.	2.6	23
108	Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops. Frontiers in Plant Science, 2017, 8, 980.	3.6	23

#	Article	IF	CITATIONS
109	Evaluating erosion control practices in an actively gullying watershed in the highlands of Ethiopia. Earth Surface Processes and Landforms, 2018, 43, 2835-2843.	2.5	23
110	Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands. Land, 2019, 8, 159.	2.9	23
111	Impact of Soil Conservation and Eucalyptus on Hydrology and Soil Loss in the Ethiopian Highlands. Water (Switzerland), 2019, 11, 2299.	2.7	23
112	Improving watershed management practices in humid regions. Hydrological Processes, 2017, 31, 3294-3301.	2.6	23
113	Watershed Hydrology of the (Semi) Humid Ethiopian Highlands. , 2011, , 145-162.		23
114	A Saturated Excess Runoff Pedotransfer Function for Vegetated Watersheds. Vadose Zone Journal, 2013, 12, 1-10.	2.2	23
115	Preferential Movement of Oxygen in Soils?. Soil Science Society of America Journal, 1997, 61, 1607-1610.	2.2	22
116	Enhancement of seepage and lateral preferential flow by biopores on hillslopes. Biologia (Poland), 2006, 61, S225-S228.	1.5	22
117	A simple concept for calibrating runoff thresholds in quasiâ€distributed variable source area watershed models. Hydrological Processes, 2011, 25, 3131-3143.	2.6	22
118	Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed. Hydrology and Earth System Sciences, 2016, 20, 875-885.	4.9	22
119	Effects of land use on catchment runoff and soil loss in the sub-humid Ethiopian highlands. Ecohydrology and Hydrobiology, 2017, 17, 274-282.	2.3	22
120	Water Quality Assessment by Measuring and Using Landsat 7 ETM+ Images for the Current and Previous Trend Perspective: Lake Tana Ethiopia. Journal of Water Resource and Protection, 2017, 09, 1564-1585.	0.8	22
121	Movement of Heavy Metals in Soil through Preferential Flow Paths under Different Rainfall Intensities. Clean - Soil, Air, Water, 2008, 36, 984-989.	1.1	21
122	A Simple Processâ€Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model ¹ . Journal of the American Water Resources Association, 2012, 48, 1151-1161.	2.4	21
123	Variable Source Area Hydrology Modeling with the Water Erosion Prediction Project Model. Journal of the American Water Resources Association, 2015, 51, 330-342.	2.4	21
124	Establishing irrigation potential of a hillside aquifer in the African highlands. Hydrological Processes, 2020, 34, 1741-1753.	2.6	21
125	Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia. Water (Switzerland), 2020, 12, 547.	2.7	21
126	A simple model for predicting water table fluctuations in a tidal marsh. Water Resources Research, 2007, 43, .	4.2	20

#	Article	IF	CITATIONS
127	Watershed modeling for reducing future non-point source sediment and phosphorus load in the Lake Tana Basin, Ethiopia. Journal of Soils and Sediments, 2018, 18, 309-322.	3.0	20
128	Impact of Soil Depth and Topography on the Effectiveness of Conservation Practices on Discharge and Soil Loss in the Ethiopian Highlands. Land, 2017, 6, 78.	2.9	19
129	Effect of Periâ€urban Development and Lithology on Streamflow in a Mediterranean Catchment. Land Degradation and Development, 2018, 29, 1141-1153.	3.9	19
130	A nine-year study on the benefits and risks of soil and water conservation practices in the humid highlands of Ethiopia: The Debre Mawi watershed. Journal of Environmental Management, 2020, 270, 110885.	7.8	19
131	Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 2022, 73, .	3.9	19
132	The long-term effect of sludge application on Cu, Zn, and Mo behavior in soils and accumulation in soybean seeds. Plant and Soil, 2007, 299, 227-236.	3.7	18
133	Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes. Frontiers in Earth Science, 2015, 3, .	1.8	18
134	Conservation Agriculture Saves Irrigation Water in the Dry Monsoon Phase in the Ethiopian Highlands. Water (Switzerland), 2019, 11, 2103.	2.7	18
135	Application of denitrifying bioreactors for the removal of atrazine in agricultural drainage water. Journal of Environmental Management, 2019, 239, 48-56.	7.8	18
136	Predicting Shallow Groundwater Tables for Sloping Highland Aquifers. Water Resources Research, 2019, 55, 11088-11100.	4.2	18
137	Transport and Retention Behaviors of Deformable Polyacrylamide Microspheres in Convergent–Divergent Microchannels. Environmental Science & Technology, 2020, 54, 10876-10884.	10.0	18
138	Water Balance for a Tropical Lake in the Volcanic Highlands: Lake Tana, Ethiopia. Water (Switzerland), 2020, 12, 2737.	2.7	18
139	Experimental Evaluation for the Impacts of Conservation Agriculture with Drip Irrigation on Crop Coefficient and Soil Properties in the Sub-Humid Ethiopian Highlands. Water (Switzerland), 2020, 12, 947.	2.7	18
140	Field Test of the Variable Source Area Interpretation of the Curve Number Rainfall-Runoff Equation. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 235-244.	1.0	17
141	Economic Analysis of Best Management Practices to Reduce Watershed Phosphorus Losses. Journal of Environmental Quality, 2012, 41, 855-864.	2.0	17
142	<scp>SWAT</scp> model: A Multiâ€Operating System, Multiâ€Platform <scp>SWAT</scp> Model Package in R. Journal of the American Water Resources Association, 2014, 50, 1349-1353.	2.4	17
143	Spatial and Temporal Trends of Recent Dissolved Phosphorus Concentrations in Lake Tana and its Four Main Tributaries. Land Degradation and Development, 2017, 28, 1742-1751.	3.9	17
144	The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid vegetated watershed. Hydrology and Earth System Sciences, 2018, 22, 5947-5965.	4.9	17

#	Article	IF	CITATIONS
145	Assessment of Suitable Land for Surface Irrigation in Ungauged Catchments: Blue Nile Basin, Ethiopia. Water (Switzerland), 2019, 11, 1465.	2.7	17
146	Capillary pressure overshoot for unstable wetting fronts is explained by Hoffman's velocityâ€dependent contactâ€angle relationship. Water Resources Research, 2014, 50, 5290-5297.	4.2	16
147	Nonâ€Point Source Pollution of Dissolved Phosphorus in the Ethiopian Highlands: The Awramba Watershed Near Lake Tana. Clean - Soil, Air, Water, 2016, 44, 703-709.	1.1	16
148	Modeling sediment concentration and discharge variations in a small Ethiopian watershed with contributions from an unpaved road. Journal of Hydrology and Hydromechanics, 2017, 65, 1-17.	2.0	16
149	Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls. Journal of Hydrology, 2017, 555, 420-434.	5.4	16
150	Variability of soil surface characteristics in a mountainous watershed in Valle del Cauca, Colombia: Implications for runoff, erosion, and conservation. Journal of Hydrology, 2019, 576, 273-286.	5.4	16
151	Nitrous Oxide and Ammonia Emissions from Urineâ€Treated Soils: Texture Effect. Vadose Zone Journal, 2006, 5, 1236-1245.	2.2	16
152	Pore scale consideration in unstable gravity driven finger flow. Water Resources Research, 2013, 49, 7815-7819.	4.2	15
153	Developing Soil Conservation Strategies with Technical and Community Knowledge in a Degrading Subâ€Humid Mountainous Landscape. Land Degradation and Development, 2018, 29, 749-764.	3.9	15
154	Assessment of Nitrate in Wells and Springs in the North Central Ethiopian Highlands. Water (Switzerland), 2018, 10, 476.	2.7	15
155	Bottom Sediment Characteristics of a Tropical Lake: Lake Tana, Ethiopia. Hydrology, 2020, 7, 18.	3.0	15
156	Including Source-Specific Phosphorus Mobility in a Nonpoint Source Pollution Model for Agricultural Watersheds. Journal of Environmental Engineering, ASCE, 2009, 135, 25-35.	1.4	14
157	Shift from transport limited to supply limited sediment concentrations with the progression of monsoon rains in the Upper Blue Nile Basin. Earth Surface Processes and Landforms, 2017, 42, 1317-1328.	2.5	14
158	Exclosures improve degraded landscapes in the sub-humid Ethiopian Highlands: the Ferenj Wuha watershed. Journal of Environmental Management, 2020, 270, 110802.	7.8	14
159	Groundwater Quality in an Upland Agricultural Watershed in the Sub-Humid Ethiopian Highlands. Journal of Water Resource and Protection, 2017, 09, 1199-1212.	0.8	14
160	Reply to "Comments on â€~Poreâ€Scale Visualization of Colloid Transport and Retention in Partly Saturated Porous Media'― Vadose Zone Journal, 2005, 4, 957-958.	2.2	13
161	Sustainable Water Management in the Tourism Economy: Linking the Mediterranean's Traditional Rainwater Cisterns to Modern Needs. Water (Switzerland), 2017, 9, 868.	2.7	13
162	Perennial Grass Bioenergy Cropping on Wet Marginal Land: Impacts on Soil Properties, Soil Organic Carbon, and Biomass During Initial Establishment. Bioenergy Research, 2018, 11, 262-276.	3.9	13

#	Article	IF	CITATIONS
163	Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices. Water (Switzerland), 2020, 12, 2702.	2.7	13
164	Predicting Reference Evaporation for the Ethiopian Highlands. Journal of Water Resource and Protection, 2017, 09, 1244-1269.	0.8	13
165	Chloride and Lithium Transport in Large Arrays of Undisturbed Silt Loam and Sandy Loam Soil Columns. Vadose Zone Journal, 2003, 2, 715-727.	2.2	12
166	Closure to "Simple Estimation of Prevalence of Hortonian Flow in New York City Watersheds―by M. Todd Walter, Vishal K. Mehta, Alexis M. Marrone, Jan Boll, Pierre Gérard-Marchant, Tammo S. Steenhuis, and Michael F. Walter. Journal of Hydrologic Engineering - ASCE, 2005, 10, 169-170.	1.9	12
167	Groundwater Evaporation and Recharge for a Floodplain in a Subâ€humid Monsoon Climate in Ethiopia. Land Degradation and Development, 2017, 28, 1831-1841.	3.9	12
168	The Effect of Landscape Interventions on Groundwater Flow and Surface Runoff in a Watershed in the Upper Reaches of the Blue Nile. Water (Switzerland), 2019, 11, 2188.	2.7	12
169	The Response of Water and Nutrient Dynamics and of Crop Yield to Conservation Agriculture in the Ethiopian Highlands. Sustainability, 2020, 12, 5989.	3.2	12
170	Groundwater use of a small Eucalyptus patch during the dry monsoon phase. Biologia (Poland), 2020, 75, 853-864.	1.5	12
171	Atrazine fate on a tile drained field in northern New York: a case study. Agricultural Water Management, 1996, 31, 195-203.	5.6	11
172	Wetting and nonwetting fluid displacements in porous media. Transport in Porous Media, 1996, 25, 205-215.	2.6	11
173	The impact of biofilm-forming potential and tafi production on transport of environmental Salmonella through unsaturated porous media. Biologia (Poland), 2009, 64, 460-464.	1.5	11
174	Relating hydrogeomorphic properties to stream buffering chemistry in the Neversink River watershed, New York State, USA. Hydrological Processes, 2010, 24, 3759-3771.	2.6	11
175	Assessing the potential of MODIS/Terra version 5 images to improve near shore lake bathymetric surveys. International Journal of Applied Earth Observation and Geoinformation, 2015, 36, 13-21.	2.8	11
176	Antecedent and Post-Application Rain Events Trigger Glyphosate Transport from Runoff-Prone Soils. Environmental Science and Technology Letters, 2018, 5, 249-254.	8.7	11
177	Biochar acting as an electron acceptor reduces nitrate removal in woodchip denitrifying bioreactors. Ecological Engineering, 2020, 149, 105724.	3.6	11
178	Effect of Gully Headcut Treatment on Sediment Load and Gully Expansion in the Sub Humid Ethiopian Highlands. Environment and Ecology Research, 2017, 5, 138-144.	0.5	11
179	A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater. Hydrology and Earth System Sciences, 2020, 24, 4213-4237.	4.9	11
180	Rainfall Runoff Relationships for a Cloud Forest Watershed in Central America: Implications for Water Resource Engineering ¹ . Journal of the American Water Resources Association, 2012, 48, 1022-1031.	2.4	10

#	Article	IF	CITATIONS
181	The Relationship of Lake Morphometry and Phosphorus Dynamics of a Tropical Highland Lake: Lake Tana, Ethiopia. Water (Switzerland), 2020, 12, 2243.	2.7	10
182	Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrology and Hydrobiology, 2020, 20, 301-311.	2.3	10
183	Estimating Surface and Groundwater Irrigation Potential under Different Conservation Agricultural Practices and Irrigation Systems in the Ethiopian Highlands. Water (Switzerland), 2021, 13, 1645.	2.7	10
184	Soil Erosion and Discharge in the Blue Nile Basin: Trends and Challenges. , 2014, , 133-147.		10
185	Water Quality Characteristics of a Water Hyacinth Infested Tropical Highland Lake: Lake Tana, Ethiopia. Frontiers in Water, 2022, 4, .	2.3	10
186	Title is missing!. Nutrient Cycling in Agroecosystems, 1998, 50, 91-97.	2.2	9
187	In situ measurements of colloid transport and retention using synchrotron X-ray fluorescence. Water Resources Research, 2006, 42, .	4.2	9
188	Determinants of household participation in the management of rural water supply systems: A case from Ethiopia. Water Policy, 2013, 15, 985-1000.	1.5	9
189	Real-Time Forecast of Hydrologically Sensitive Areas in the Salmon Creek Watershed, New York State, Using an Online Prediction Tool. Water (Switzerland), 2013, 5, 917-944.	2.7	9
190	Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin. Water (Switzerland), 2017, 9, 847.	2.7	9
191	Assessment of Practices for Controlling Shallow Valley-Bottom Gullies in the Sub-Humid Ethiopian Highlands. Water (Switzerland), 2018, 10, 389.	2.7	9
192	Can degraded soils be improved by ripping through the hardpan and liming? A field experiment in the humid Ethiopian Highlands. Land Degradation and Development, 2020, 31, 2047-2059.	3.9	9
193	Evaluating Irrigation and Farming Systems with Solar MajiPump in Ethiopia. Agronomy, 2021, 11, 17.	3.0	9
194	COMPARISON OF LANDUSE AND LANDCOVER CHANGES, DRIVERS AND IMPACTS FOR A MOISTURE-SUFFICIENT AND DROUGHT-PRONE REGION IN THE ETHIOPIAN HIGHLANDS. Experimental Agriculture, 2011, 47, 71-83.	0.9	8
195	Revisiting SWAT as a Saturation-Excess Runoff Model. Water (Switzerland), 2019, 11, 1427.	2.7	8
196	Comment on "On the continuum-scale modeling of gravity-driven fingers in unsaturated porous media: The inadequacy of the Richards equation with standard monotonic constitutive relations and hysteretic equations of state―by Mehdi Eliassi and Robert J. Gla. Water Resources Research, 2003, 39, .	4.2	7
197	Inert Carbon Nanoparticles for the Assessment of Preferential Flow in Saturated Dual-Permeability Porous Media. Industrial & Engineering Chemistry Research, 2017, 56, 7365-7374.	3.7	7
198	Hotspots of Nitrous Oxide Emission in Fertilized and Unfertilized Perennial Grasses. Soil Science Society of America Journal, 2017, 81, 450-458.	2.2	7

#	Article	IF	CITATIONS
199	Chloride and Lithium Transport in Large Arrays of Undisturbed Silt Loam and Sandy Loam Soil Columns. Vadose Zone Journal, 2003, 2, 715.	2.2	7
200	Assessing Digital Soil Inventories for Predicting Streamflow in the Headwaters of the Blue Nile. Hydrology, 2020, 7, 8.	3.0	7
201	Establishing Stage–Discharge Rating Curves in Developing Countries: Lake Tana Basin, Ethiopia. Hydrology, 2022, 9, 13.	3.0	7
202	Trace Metal Retention in the Incorporation Zone of Land-Applied Sludge. Environmental Science & Technology, 1999, 33, 1171-1174.	10.0	6
203	A unique vadose zone model for shallow aquifers: the Hetao irrigation district, China. Hydrology and Earth System Sciences, 2019, 23, 3097-3115.	4.9	6
204	Sediment deposition (1940–2017) in a historically pristine lake in a rapidly developing tropical highland region in Ethiopia. Earth Surface Processes and Landforms, 2021, 46, 1521-1535.	2.5	6
205	Berken plow and intercropping with pigeon pea ameliorate degraded soils with a hardpan in the Ethiopian highlands. Geoderma, 2022, 407, 115523.	5.1	6
206	An Analysis of the Movement of Wetting and Nonwetting Fluids in Homogeneous Porous Media. Transport in Porous Media, 2000, 41, 121-135.	2.6	5
207	Sensitivity analysis of the parameterâ€efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes. Land Degradation and Development, 2019, 30, 151-165.	3.9	5
208	Connecting hillslope and runoff generation processes in the Ethiopian Highlands: The Ene-Chilala watershed. Journal of Hydrology and Hydromechanics, 2020, 68, 313-327.	2.0	5
209	Conservation and Conventional Vegetable Cultivation Increase Soil Organic Matter and Nutrients in the Ethiopian Highlands. Water (Switzerland), 2022, 14, 476.	2.7	5
210	Phosphorus Export From Two Contrasting Rural Watersheds in the (Sub) Humid Ethiopian Highlands. Frontiers in Earth Science, 2021, 9, .	1.8	5
211	Column flow in stratified soils and fingers in Hele-Shaw cells: A review. Geophysical Monograph Series, 2002, , 79-85.	0.1	4
212	Gaseous Nitrogen Emission from Soil Aggregates as Affected by Clay Mineralogy and Repeated Urine Applications. Water, Air, and Soil Pollution, 2008, 195, 285-299.	2.4	4
213	Ecological Status as the Basis for the Holistic Environmental Flow Assessment of a Tropical Highland River in Ethiopia. Water (Switzerland), 2021, 13, 1913.	2.7	4
214	Phosphorus Modeling, in Lake Tana Basin, Ethiopia. Journal of Environment and Human, 2014, 2014, 47-55.	0.2	4
215	Phosphonate herbicide interactions with quartz, montmorillonite, and quartzâ€enriched agricultural soil. Soil Science Society of America Journal, 2022, 86, 209-223.	2.2	4
216	Irrigation Rehab: A computer aided learning tool for system rehabilitation. Irrigation and Drainage Systems, 1989, 3, 241-253.	0.5	3

#	Article	IF	CITATIONS
217	Internet mapping tools make scientific applications easy. Eos, 2006, 87, 386.	0.1	3
218	Barriers to implementing poverty alleviation through livelihood strategies: A participatory analysis of farming communities in Ethiopia's upper Blue Nile basin. Environmental Science and Policy, 2022, 136, 453-466.	4.9	3
219	Spatial evidence of cross-crop pesticide contamination in small-holder Thai farms. Agronomy for Sustainable Development, 2014, 34, 773-782.	5.3	2
220	Nitrous Oxide and Methane Fluxes from Smallholder Farms: A Scoping Study in the Anjeni Watershed. Climate, 2016, 4, 62.	2.8	2
221	Revisiting Daily MODIS Evapotranspiration Algorithm Using Flux Tower Measurements in China. Earth and Space Science, 2021, 8, e2021EA001818.	2.6	2
222	Topography Impacts Hydrology in the Sub-Humid Ethiopian Highlands. Water (Switzerland), 2022, 14, 196.	2.7	2
223	Featured Collection Introduction: Synthesis and Analysis of Conservation Effects Assessment Projects for Improved Water Quality. Journal of the American Water Resources Association, 2015, 51, 302-304.	2.4	1
224	Spring-Thaw Nitrous Oxide Emissions from Reed Canarygrass on Wetness-Prone Marginal Soil in New York State. Soil Science Society of America Journal, 2016, 80, 428-437.	2.2	1
225	Learning from the scientific legacies of W. Brutsaert and JY. Parlange. Water Resources Research, 2014, 50, 1856-1857.	4.2	0
226	Predicting the Fate of Preferentially Moving Herbicides. Vadose Zone Journal, 2019, 18, 1-11.	2.2	0
227	Rapid Density Profiling of Consolidating Clay Using Synchrotron Radiation. Geotechnical Testing Journal, 1997, 20, GTJ19970009.	1.0	0
228	Impact of Land Use and Landscape on Runoff and Sediment in the Sub-humid Ethiopian Highlands: The Ene-Chilala Watershed. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 268-278.	0.3	0
229	Preface to the special issue on biohydrology dedicated to the memory of Dr. Louis W. Dekker. Journal of Hydrology and Hydromechanics, 2020, 68, 303-305.	2.0	0