
## Tolga O Bozkurt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423781/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF          | CITATIONS               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|
| 1  | A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO Journal, 2022, 41, .                                                                                                            | 7.8         | 36                      |
| 2  | Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.                                                                 | 6.6         | 46                      |
| 3  | An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. ELife, 2021, 10, .                                                                                             | 6.0         | 33                      |
| 4  | Dynamic localization of a helper NLR at the plant–pathogen interface underpins pathogen<br>recognition. Proceedings of the National Academy of Sciences of the United States of America, 2021,<br>118, .                                 | 7.1         | 36                      |
| 5  | Chloroplasts alter their morphology and accumulate at the pathogen interface during infection by <i>Phytophthora infestans</i> . Plant Journal, 2021, 107, 1771-1787.                                                                    | 5.7         | 25                      |
| 6  | Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock                                                                                                                           | 10 Jf 50 54 | 12 Td (edition<br>1,430 |
| 7  | Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.                                   | 7.1         | 39                      |
| 8  | The plant–pathogen haustorial interface at a glance. Journal of Cell Science, 2020, 133, .                                                                                                                                               | 2.0         | 40                      |
| 9  | Contrasting and emerging roles of autophagy in plant immunity. Current Opinion in Plant Biology, 2019, 52, 46-53.                                                                                                                        | 7.1         | 58                      |
| 10 | N-terminal Î <sup>2</sup> -strand underpins biochemical specialization of an ATG8 isoform. PLoS Biology, 2019, 17, e3000373.                                                                                                             | 5.6         | 47                      |
| 11 | The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens, 2019, 15, e1007620.                                                       | 4.7         | 105                     |
| 12 | An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. ELife, 2019, 8, .                                                                                                          | 6.0         | 162                     |
| 13 | Modulation of plant autophagy during pathogen attack. Journal of Experimental Botany, 2018, 69, 1325-1333.                                                                                                                               | 4.8         | 50                      |
| 14 | Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen. ELife, 2018, 7, .                                                                            | 6.0         | 67                      |
| 15 | A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface.<br>Scientific Reports, 2017, 7, 1141.                                                                                               | 3.3         | 43                      |
| 16 | NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of<br>Sciences of the United States of America, 2017, 114, 8113-8118.                                                                      | 7.1         | 330                     |
| 17 | An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. ELife, 2016, 5, .                                                                                                                           | 6.0         | 189                     |
| 18 | Helper <scp>NLR</scp> proteins <scp>NRC</scp> 2a/b and <scp>NRC</scp> 3 but not <scp>NRC</scp> 1<br>are required for Ptoâ€mediated cell death and resistance in <i>Nicotiana benthamiana</i> . New<br>Phytologist, 2016, 209, 1344-1352. | 7.3         | 92                      |

Tolga O Bozkurt

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine<br>Pathogen Effector Protein PexRD54. Journal of Biological Chemistry, 2016, 291, 20270-20282.                                                 | 3.4  | 74        |
| 20 | Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete<br><i>Phytophthora infestans</i> in Addition to the Fungus <i>Fusarium oxysporum</i> . Molecular<br>Plant-Microbe Interactions, 2015, 28, 1316-1329. | 2.6  | 80        |
| 21 | Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS ONE, 2015, 10, e0137071.                                                | 2.5  | 78        |
| 22 | A Recent Expansion of the RXLR Effector Gene <i>Avrblb2</i> Is Maintained in Global Populations of <i>Phytophthora infestans</i> Indicating Different Contributions to Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 901-912.    | 2.6  | 44        |
| 23 | Fungal Sex Receptors Recalibrated to Detect Host Plants. Cell Host and Microbe, 2015, 18, 637-638.                                                                                                                                            | 11.0 | 1         |
| 24 | Functional Divergence of Two Secreted Immune Proteases of Tomato. Current Biology, 2015, 25, 2300-2306.                                                                                                                                       | 3.9  | 72        |
| 25 | Rerouting of Plant Late Endocytic Trafficking Toward a Pathogen Interface. Traffic, 2015, 16, 204-226.                                                                                                                                        | 2.7  | 103       |
| 26 | Variation in Capsidiol Sensitivity between Phytophthora infestans and Phytophthora capsici Is<br>Consistent with Their Host Range. PLoS ONE, 2014, 9, e107462.                                                                                | 2.5  | 19        |
| 27 | The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and<br>Enhances Susceptibility to <i>Phytophthora infestans</i> Â Â. Plant Physiology, 2014, 165, 1005-1018.                                          | 4.8  | 116       |
| 28 | Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.                                                                                                                                        | 12.6 | 179       |
| 29 | The Irish Potato Famine Pathogen Phytophthora infestans Translocates the CRN8 Kinase into Host<br>Plant Cells. PLoS Pathogens, 2012, 8, e1002875.                                                                                             | 4.7  | 77        |
| 30 | Host Protein BSL1 Associates with <i>Phytophthora infestans</i> RXLR Effector AVR2 and the<br><i>Solanum demissum</i> Immune Receptor R2 to Mediate Disease Resistance. Plant Cell, 2012, 24,<br>3420-3434.                                   | 6.6  | 130       |
| 31 | Oomycetes, effectors, and all that jazz. Current Opinion in Plant Biology, 2012, 15, 483-492.                                                                                                                                                 | 7.1  | 232       |
| 32 | <i>Phytophthora infestans</i> effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20832-20837.            | 7.1  | 285       |
| 33 | Cellular and transcriptional responses of wheat during compatible and incompatible raceâ€specific interactions with <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant Pathology, 2010, 11, 625-640.                         | 4.2  | 49        |
| 34 | Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 705-715.                                                                                                                             | 2.1  | 108       |
| 35 | Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010,<br>12, 1015-1015.                                                                                                                        | 2.1  | 11        |
| 36 | An Effector-Targeted Protease Contributes to Defense against <i>Phytophthora infestans</i> and Is under Diversifying Selection in Natural Hosts. Plant Physiology, 2010, 154, 1794-1804.                                                      | 4.8  | 166       |

Tolga O Bozkurt

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ancient class of translocated oomycete effectors targets the host nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17421-17426.                                                          | 7.1  | 326       |
| 38 | In Planta Expression Screens of <i>Phytophthora infestans</i> RXLR Effectors Reveal Diverse<br>Phenotypes, Including Activation of the <i>Solanum bulbocastanum</i> Disease Resistance Protein<br>Rpi-blb2. Plant Cell, 2009, 21, 2928-2947. | 6.6  | 376       |
| 39 | Ten things to know about oomycete effectors. Molecular Plant Pathology, 2009, 10, 795-803.                                                                                                                                                   | 4.2  | 185       |
| 40 | Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.                                                                                                                         | 27.8 | 1,405     |
| 41 | Identification of differentially expressed transcripts from leaves of the boron tolerant plant<br>Gypsophila perfoliata L Plant Cell Reports, 2008, 27, 1411-1422.                                                                           | 5.6  | 21        |
| 42 | Genes associated with resistance to wheat yellow rust disease identified by differential display<br>analysis. Physiological and Molecular Plant Pathology, 2007, 71, 251-259.                                                                | 2.5  | 48        |
| 43 | Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochemical Cenetics, 2007, 45, 469-486                                                                                  | 1.7  | 13        |