Tolga O Bozkurt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423781/publications.pdf

Version: 2024-02-01

43 7,089 32 43 g-index

59 59 59 59 6937

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	eglock 10 ⁻	Tf,50,742 Tc
2	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
3	In Planta Expression Screens of <i>Phytophthora infestans </i> RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the <i>Solanum bulbocastanum </i> Disease Resistance Protein Rpi-blb2. Plant Cell, 2009, 21, 2928-2947.	6.6	376
4	NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8113-8118.	7.1	330
5	Ancient class of translocated oomycete effectors targets the host nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17421-17426.	7.1	326
6	<i>Phytophthora infestans</i> effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20832-20837.	7.1	285
7	Oomycetes, effectors, and all that jazz. Current Opinion in Plant Biology, 2012, 15, 483-492.	7.1	232
8	An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. ELife, $2016, 5, .$	6.0	189
9	Ten things to know about oomycete effectors. Molecular Plant Pathology, 2009, 10, 795-803.	4.2	185
10	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	12.6	179
11	An Effector-Targeted Protease Contributes to Defense against <i>Phytophthora infestans</i> and Is under Diversifying Selection in Natural Hosts. Plant Physiology, 2010, 154, 1794-1804.	4.8	166
12	An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. ELife, $2019, 8, .$	6.0	162
13	Host Protein BSL1 Associates with <i>Phytophthora infestans</i> RXLR Effector AVR2 and the <i>Solanum demissum</i> Immune Receptor R2 to Mediate Disease Resistance. Plant Cell, 2012, 24, 3420-3434.	6.6	130
14	The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to <i>Phytophthora infestans</i>) Â Â. Plant Physiology, 2014, 165, 1005-1018.	4.8	116
15	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 705-715.	2.1	108
16	The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens, 2019, 15, e1007620.	4.7	105
17	Rerouting of Plant Late Endocytic Trafficking Toward a Pathogen Interface. Traffic, 2015, 16, 204-226.	2.7	103
18	Helper <scp>NLR</scp> proteins <scp>NRC</scp> 2a/b and <scp>NRC</scp> 3 but not <scp>NRC</scp> 1 are required for Ptoâ€mediated cell death and resistance in <i>Nicotiana benthamiana</i> Phytologist, 2016, 209, 1344-1352.	7.3	92

#	Article	IF	CITATIONS
19	Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete <i>Phytophthora infestans</i> in Addition to the Fungus <i>Fusarium oxysporum</i> Molecular Plant-Microbe Interactions, 2015, 28, 1316-1329.	2.6	80
20	Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS ONE, 2015, 10, e0137071.	2.5	78
21	The Irish Potato Famine Pathogen Phytophthora infestans Translocates the CRN8 Kinase into Host Plant Cells. PLoS Pathogens, 2012, 8, e1002875.	4.7	77
22	Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. Journal of Biological Chemistry, 2016, 291, 20270-20282.	3.4	74
23	Functional Divergence of Two Secreted Immune Proteases of Tomato. Current Biology, 2015, 25, 2300-2306.	3.9	72
24	Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen. ELife, 2018, 7, .	6.0	67
25	Contrasting and emerging roles of autophagy in plant immunity. Current Opinion in Plant Biology, 2019, 52, 46-53.	7.1	58
26	Modulation of plant autophagy during pathogen attack. Journal of Experimental Botany, 2018, 69, 1325-1333.	4.8	50
27	Cellular and transcriptional responses of wheat during compatible and incompatible raceâ€specific interactions with ⟨i⟩Puccinia striiformis⟨/i⟩ f. sp. ⟨i⟩tritici⟨/i⟩. Molecular Plant Pathology, 2010, 11, 625-640.	4.2	49
28	Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiological and Molecular Plant Pathology, 2007, 71, 251-259.	2.5	48
29	N-terminal \hat{l}^2 -strand underpins biochemical specialization of an ATG8 isoform. PLoS Biology, 2019, 17, e3000373.	5.6	47
30	Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.	6.6	46
31	A Recent Expansion of the RXLR Effector Gene <i>Avrblb2</i> Is Maintained in Global Populations of <i>Phytophthora infestans</i> Indicating Different Contributions to Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 901-912.	2.6	44
32	A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Scientific Reports, 2017, 7, 1141.	3.3	43
33	The plant–pathogen haustorial interface at a glance. Journal of Cell Science, 2020, 133, .	2.0	40
34	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	7.1	39
35	Dynamic localization of a helper NLR at the plant–pathogen interface underpins pathogen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
36	A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO Journal, 2022, 41, .	7.8	36

#	Article	IF	CITATIONS
37	An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. ELife, $2021,10,10$	6.0	33
38	Chloroplasts alter their morphology and accumulate at the pathogen interface during infection by <i>Phytophthora infestans</i> . Plant Journal, 2021, 107, 1771-1787.	5.7	25
39	Identification of differentially expressed transcripts from leaves of the boron tolerant plant Gypsophila perfoliata L Plant Cell Reports, 2008, 27, 1411-1422.	5.6	21
40	Variation in Capsidiol Sensitivity between Phytophthora infestans and Phytophthora capsici Is Consistent with Their Host Range. PLoS ONE, 2014, 9, e107462.	2.5	19
41	Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochemical Genetics, 2007, 45, 469-486.	1.7	13
42	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 1015-1015.	2.1	11
43	Fungal Sex Receptors Recalibrated to Detect Host Plants. Cell Host and Microbe, 2015, 18, 637-638.	11.0	1