Jennifer C Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423365/publications.pdf

Version: 2024-02-01

86 papers

3,826 citations

33 h-index 138468 58 g-index

88 all docs 88 docs citations

88 times ranked 4420 citing authors

#	Article	IF	CITATIONS
1	Copper(II) Binding to α-Synuclein, the Parkinson's Protein. Journal of the American Chemical Society, 2008, 130, 6898-6899.	13.7	220
2	Cysteine cathepsins are essential in lysosomal degradation of \hat{l}_{\pm} -synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9322-9327.	7.1	170
3	Biophysics of α-synuclein membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 162-171.	2.6	168
4	α-Synuclein Interacts with Glucocerebrosidase Providing a Molecular Link between Parkinson and Gaucher Diseases. Journal of Biological Chemistry, 2011, 286, 28080-28088.	3.4	160
5	α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease. Journal of Biological Chemistry, 2015, 290, 18467-18477.	3.4	157
6	Â-Synuclein structures from fluorescence energy-transfer kinetics: Implications for the role of the protein in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16466-16471.	7.1	146
7	α-Synuclein: Stable compact and extended monomeric structures and pH dependence of dimer formation. Journal of the American Society for Mass Spectrometry, 2004, 15, 1435-1443.	2.8	140
8	Cytochrome b562 folding triggered by electron transfer: Approaching the speed limit for formation of a four-helix-bundle protein. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6587-6590.	7.1	117
9	Membrane Remodeling by α-Synuclein and Effects on Amyloid Formation. Journal of the American Chemical Society, 2013, 135, 15970-15973.	13.7	103
10	Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins. ACS Chemical Neuroscience, 2020, 11, 4336-4350.	3 . 5	101
11	Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid, Pmel17. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21447-21452.	7.1	96
12	Depth of \hat{l}_{\pm} -Synuclein in a Bilayer Determined by Fluorescence, Neutron Reflectometry, and Computation. Biophysical Journal, 2012, 102, 613-621.	0.5	94
13	Membrane-bound α-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Molecular Genetics and Metabolism, 2013, 108, 56-64.	1.1	94
14	Structural Insights into α-Synuclein Fibril Polymorphism: Effects of Parkinson's Disease-Related C-Terminal Truncations. Journal of Molecular Biology, 2019, 431, 3913-3919.	4.2	92
15	Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy. Journal of Biological Chemistry, 2018, 293, 767-776.	3.4	82
16	The protein-folding speed limit: Intrachain diffusion times set by electron-transfer rates in denatured Ru(NH3)5(His-33)-Zn-cytochrome c. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3838-3840.	7.1	78
17	Tryptophan Probes at the α-Synuclein and Membrane Interface. Journal of Physical Chemistry B, 2010, 114, 4615-4622.	2.6	76
18	Tertiary Contact Formation in \hat{l}_{\pm} -Synuclein Probed by Electron Transfer. Journal of the American Chemical Society, 2005, 127, 16388-16389.	13.7	66

#	Article	IF	Citations
19	Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated \hat{l}_{\pm} -synuclein. Journal of Biological Chemistry, 2018, 293, 11195-11205.	3.4	64
20	α-Synuclein Tertiary Contact Dynamics. Journal of Physical Chemistry B, 2007, 111, 2107-2112.	2.6	59
21	Spermine Binding to Parkinson's Protein α-Synuclein and Its Disease-Related A30P and A53T Mutants. Journal of Physical Chemistry B, 2008, 112, 11147-11154.	2.6	52
22	Identification of the Minimal Copper(II)-Binding \hat{l}_{\pm} -Synuclein Sequence. Inorganic Chemistry, 2009, 48, 9303-9307.	4.0	49
23	Fate plasticity and reprogramming in genetically distinct populations of <i>Danio</i> leucophores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11806-11811.	7.1	49
24	Interplay between $\hat{l}\pm$ -synuclein amyloid formation and membrane structure. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 483-491.	2.3	49
25	C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson's disease. Journal of Biological Chemistry, 2019, 294, 9973-9984.	3.4	48
26	Molecular Details of \hat{l}_{\pm} -Synuclein Membrane Association Revealed by Neutrons and Photons. Journal of Physical Chemistry B, 2015, 119, 4812-4823.	2.6	46
27	Structural features of cytochrome c' folding intermediates revealed by fluorescence energy-transfer kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14778-14782.	7.1	44
28	Structural Features of Membrane-bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy. Journal of Biological Chemistry, 2015, 290, 744-754.	3.4	44
29	Evidence for Copper-dioxygen Reactivity during α-Synuclein Fibril Formation. Journal of the American Chemical Society, 2010, 132, 6636-6637.	13.7	43
30	Raman fingerprints of amyloid structures. Chemical Communications, 2018, 54, 6983-6986.	4.1	41
31	Cytochrome c' folding triggered by electron transfer: Fast and slow formation of four-helix bundles. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7760-7764.	7.1	40
32	Saposin C Protects Glucocerebrosidase against α-Synuclein Inhibition. Biochemistry, 2013, 52, 7161-7163.	2.5	39
33	The N terminus of $\hat{l}\pm$ -synuclein dictates fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
34	Unroofing site-specific α-synuclein–lipid interactions at the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18977-18983.	7.1	37
35	N-Terminal Acetylation Affects α-Synuclein Fibril Polymorphism. Biochemistry, 2019, 58, 3630-3633.	2.5	35
36	In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning. Nature Communications, 2020, 11, 6391.	12.8	35

#	Article	IF	CITATIONS
37	Molecular Origin of pHâ€Dependent Fibril Formation of a Functional Amyloid. ChemBioChem, 2014, 15, 1569-1572.	2.6	34
38	$\hat{l}\pm\text{-Synuclein}$ Structures Probed by 5-Fluorotryptophan Fluorescence and 19F NMR Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 7058-7061.	2.6	33
39	pH-Dependent fibril maturation of a Pmel17 repeat domain isoform revealed by tryptophan fluorescence. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 961-969.	2.3	32
40	Residue-Specific Fluorescent Probes of $\hat{I}\pm$ -Synuclein: Detection of Early Events at the N- and C-Termini during Fibril Assembly. Biochemistry, 2011, 50, 1963-1965.	2.5	31
41	Mechanism of Assembly of the Non-Covalent Spectrin Tetramerization Domain from Intrinsically Disordered Partners. Journal of Molecular Biology, 2014, 426, 21-35.	4.2	31
42	Site-specific collapse dynamics guide the formation of the cytochrome c' four-helix bundle. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 117-122.	7.1	30
43	Alpha-Synuclein Lipid-Dependent Membrane Binding and Translocation through the α-Hemolysin Channel. Biophysical Journal, 2014, 106, 556-565.	0.5	30
44	Why Study Functional Amyloids? Lessons from the Repeat Domain of Pmel17. Journal of Molecular Biology, 2018, 430, 3696-3706.	4.2	30
45	Copper(ii) enhances membrane-bound α-synuclein helix formation. Metallomics, 2011, 3, 280.	2.4	29
46	The Cytochrome c Folding Landscape Revealed by Electron-transfer Kinetics. Journal of Molecular Biology, 2002, 320, 159-164.	4.2	28
47	Taking a Bite Out of Amyloid: Mechanistic Insights into α-Synuclein Degradation by Cathepsin L. Biochemistry, 2017, 56, 3881-3884.	2.5	26
48	Equilibrium unfolding of the poly(glutamic acid)20 helix. Biopolymers, 2007, 86, 193-211.	2.4	25
49	Probing Fibril Dissolution of the Repeat Domain of a Functional Amyloid, Pmel17, on the Microscopic and Residue Level. Biochemistry, 2011, 50, 10567-10569.	2.5	24
50	NMR Structure of Calmodulin Complexed to an N-Terminally Acetylated α-Synuclein Peptide. Biochemistry, 2013, 52, 3436-3445.	2.5	24
51	Segmental Deuteration of $\hat{l}\pm$ -Synuclein for Neutron Reflectometry on Tethered Bilayers. Journal of Physical Chemistry Letters, 2017, 8, 29-34.	4.6	24
52	Probing Membrane Association of α-Synuclein Domains with VDAC Nanopore Reveals Unexpected Binding Pattern. Scientific Reports, 2019, 9, 4580.	3.3	24
53	Linking Parkinson's Disease and Melanoma: Interplay Between αâ€Synuclein and Pmel17 Amyloid Formation. Movement Disorders, 2021, 36, 1489-1498.	3.9	24
54	Stimulation of α-synuclein amyloid formation by phosphatidylglycerol micellar tubules. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1840-1847.	2.6	23

#	Article	IF	Citations
55	Effect of dioxygen on copper(II) binding to α-synuclein. Journal of Inorganic Biochemistry, 2010, 104, 245-249.	3.5	21
56	Lysophospholipid-Containing Membranes Modulate the Fibril Formation of the Repeat Domain of a Human Functional Amyloid, Pmel 17. Journal of Molecular Biology, 2014, 426, 4074-4086.	4.2	21
57	The yin and yang of amyloid: insights from α-synuclein and repeat domain of Pmel17. Physical Chemistry Chemical Physics, 2011, 13, 20066.	2.8	20
58	Segmental ¹³ Câ€Labeling and Raman Microspectroscopy of αâ€Synuclein Amyloid Formation. Angewandte Chemie - International Edition, 2018, 57, 17069-17072.	13.8	20
59	Dissociation of glucocerebrosidase dimer in solution by its co-factor, saposin C. Biochemical and Biophysical Research Communications, 2015, 457, 561-566.	2.1	19
60	Cloning, heterologous expression, and characterization of recombinant class II cytochromes c from Rhodopseudomonas palustris. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 23-28.	2.4	17
61	Folding energy landscape of cytochrome <i>cb</i> ₅₆₂ . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7834-7839.	7.1	17
62	Reversing the Amyloid Trend: Mechanism of Fibril Assembly and Dissolution of the Repeat Domain from a Human Functional Amyloid. Israel Journal of Chemistry, 2017, 57, 613-621.	2.3	17
63	Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 519-528.	2.3	17
64	Amyloid Triangles, Squares, and Loops of Apolipoprotein C-III. Biochemistry, 2014, 53, 3261-3263.	2.5	16
65	Deuteration of Escherichia coli Enzyme INtr alters its stability. Archives of Biochemistry and Biophysics, 2011, 507, 332-342.	3.0	15
66	Emerging insights into the mechanistic link between α-synuclein and glucocerebrosidase in Parkinson's disease. Biochemical Society Transactions, 2013, 41, 1509-1512.	3.4	14
67	Membrane Interactions of α-Synuclein Probed by Neutrons and Photons. Accounts of Chemical Research, 2021, 54, 302-310.	15.6	14
68	Modulating functional amyloid formation via alternative splicing of the premelanosomal protein PMEL17. Journal of Biological Chemistry, 2020, 295, 7544-7553.	3.4	13
69	Cathepsin K is a potent disaggregase of $\hat{l}\pm$ -synuclein fibrils. Biochemical and Biophysical Research Communications, 2020, 529, 1106-1111.	2.1	11
70	Watching liquid droplets of TDP-43CTD age by Raman spectroscopy. Journal of Biological Chemistry, 2022, 298, 101528.	3.4	11
71	Defining an amyloid link Between Parkinson's disease and melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22671-22673.	7.1	10
72	Terminal Alkynes as Raman Probes of αâ€Synuclein in Solution and in Cells. ChemBioChem, 2020, 21, 1582-1586.	2.6	10

#	Article	IF	CITATIONS
73	Raman spectral imaging of $13C2H15N$ -labeled \hat{l}_{\pm} -synuclein amyloid fibrils in cells. Biophysical Chemistry, 2021, 269, 106528.	2.8	10
74	5-Fluoro-d,l-Tryptophan as a Dual NMR and Fluorescent Probe of \hat{l}_\pm -Synuclein. Methods in Molecular Biology, 2012, 895, 197-209.	0.9	8
75	Coupling chemical biology and vibrational spectroscopy for studies of amyloids inÂvitro and in cells. Current Opinion in Chemical Biology, 2021, 64, 90-97.	6.1	7
76	Synchronous vs Asynchronous Chain Motion in \hat{l}_{\pm} -Synuclein Contact Dynamics. Journal of Physical Chemistry B, 2009, 113, 522-530.	2.6	6
77	Tryptophan Probes of TDP-43 C-Terminal Domain Amyloid Formation. Journal of Physical Chemistry B, 2021, 125, 3781-3789.	2.6	6
78	Genetically Encoded Aryl Alkyne for Raman Spectral Imaging of Intracellular α-Synuclein Fibrils. Journal of Molecular Biology, 2023, 435, 167716.	4.2	6
79	Single-Particle Tracking of Human Lipoproteins. Analytical Chemistry, 2016, 88, 596-599.	6.5	5
80	Tryptophan probes reveal residue-specific phospholipid interactions of apolipoprotein C-III. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2821-2828.	2.6	4
81	Purification and characterization of an amyloidogenic repeat domain from the functional amyloid Pmel17. Protein Expression and Purification, 2021, 187, 105944.	1.3	4
82	Protein Folding, Misfolding, and Disease., 2006,, 9-60.		3
83	Energy Transfer Ligands of the GluR2 Ligand Binding Core. Biochemistry, 2010, 49, 2051-2057.	2.5	3
84	Apolipoprotein C-III Nanodiscs Studied by Site-Specific Tryptophan Fluorescence. Biochemistry, 2016, 55, 4939-4948.	2.5	3
85	Segmental ¹³ Câ€Labeling and Raman Microspectroscopy of αâ€Synuclein Amyloid Formation. Angewandte Chemie, 2018, 130, 17315-17318.	2.0	2
86	Physical Chemistry in Biomedical Research: From Cuvettes toward Cellular Insights. Journal of Physical Chemistry Letters, 2017, 8, 1943-1945.	4.6	0