
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422991/publications.pdf Version: 2024-02-01

1 Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. 2 Single-Crystalline Mesoporous Polladium and Palladium-Cooper Nanocubes for Highly Efficient Electrochemical CO (sub) 22(sub) Reduction. CCS Chemistry, 2022, 4, 1376-1385. 3 Emerging Characterization Techniques for Electrode Interfaces in Suffides/Elased Alla/Eoldd/GEstate Lithium 4 Designing principles of advanced sulfur cathodes toward practical lithiumá@sulfur/batteries. SusMat, 2022, 3, 34-64. 5 Rooms@temporature metals@fsuffur batteries: What can we learn from (sep):lithiumá@fsulfur/sepp:2. informaAnA-MateriAjby, 2022, 4, . 6 Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkal-Ion Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 826-833. 7 Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. 8 Frenkel-defacted monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. 9 Theory guided design of hydrogen-bonded cobattoporphyrin frameworks for highly selective electrochemical H2O2 production in acdi. Nature communications, 2022, 13, 2721. 10 Towards practical lean-electrolyte Li&C'S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?., 2021, 42, 117-136. 11 Recent advances in black-phorphorus-based materials for electrochemical energy storage. Materials Advanced Materials, 2021, 13,	IF	CITATIONS
 Electrochemical CO (sub) 2x(sub) Reduction. CCS Chemistry, 2022, 4, 1376-1385." Emerging Characterization Techniques for Electrode Interfaces in Sulfideä@ased Alla@Eolda@Etate Lithium Batteries. Small Structures, 2022, 3, 2100146. Designing principles of advanced sulfur cathodes toward practical lithiumä@sulfur batteries. SusMat, 2022, 2, 3464. Roomä@temperature metalä@"sulfur batteries: What can we learn from (scp)-lithiumä@"sulfur.scp>?. InformaAnA-MatenAjly, 2022, 4, . Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 826-833. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. Frenkel-defeted monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltopom/hytin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte LiäC"S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?., 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemic, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemic. International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metalä@"Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladiumä@"Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters	5.8	21
Batteries. Small Structures, 2022, 3, 2100146. Designing principles of advanced sulfur cathodes toward practical lithiumäEsulfur batteries. SusMat, 2022, 2, 34-64. RoomäEtemperature metaläC*sulfur batteries: What can we learn from <scp>lithiumäC*sulfur Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 826-833. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. Fenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltoporphytin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte LiäE*S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?, 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable MetaläC*Org</scp>	4.6	39
 2022, 2, 34-64. Roomáčtemperature metaläč^{es} sulfur batteries: What can we learn from cscp>lithlumäč^{es} sulfur c/scp>?. InformaÅnÅMateriÅjly, 2022, 4, . Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 826-833. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte Liãć"S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?, 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloyed Palladiumåć"Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metaläe"Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladiumáé"Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeå6Dependent Selectivity of Electrochemical COcsubs 24 (subs Reduction on Converted 	6.9	21
 InformaAnA-MateriA₁ly, 2022, 4, . Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & Amp; Interfaces, 2022, 14, 826-833. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in add. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte Li&C'S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?, 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloyed Palladiumã€''Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 133, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metalâ€''Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladiumã€''Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeå€Dependent Selectivity of Electrochemical CO/sub>2 	7.8	77
ACS Applied Materials & Amp; Interfaces, 2022, 14, 826-833. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte Li&C*S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?., 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloyed PalladiumãC*Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable MetalàC*Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Rwiew on Multivalent Rechargeable MetalàC*Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional PalladiumãC*Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. SizeàCDependent Selectivity of Electrocchemical CO (sub>24/sub> Reduction on Converted	8.5	45
 CO2 reduction. Chem Catalysis, 2022, 2, 1267-1276. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte Liã€"S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?., 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloyed Palladiumã€"Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie , 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metalã€"Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladiumã€"Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeå€Dependent Selectivity of Electrochemical CO 	4.0	4
 Communications, 2022, 13, 2193. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. Towards practical lean-electrolyte Li&C"S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?., 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloyed Palladiumãé Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metalãé "Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladiumãé "Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. SizeåCDependent Selectivity of Electrochemical CO 	2.9	52
 9 electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. 10 Towards practical lean-electrolyte Liâ€"S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?. , 2022, 1, e9120012. 11 Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. 12 Alloyed Palladiumã€"Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821. 13 Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. 14 Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. 15 Review on Multivalent Rechargeable Metalâ€"Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. 16 Two-Dimensional Palladiumã€"Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeå€Dependent Selectivity of Electrochemical CO₂ 	5.8	137
 solvating electrolytes?., 2022, 1, e9120012. Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136. Alloyed Palladiumã€"Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metalâ€"Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladiumã€"Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO₂ 	5.8	38
 Today, 2021, 42, 117-136. Alloyed Palladium–Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladium–Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO₂ Reduction on Converted 		83
 Advanced Materials, 2021, 33, e2005821. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladium–Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO₂ 	8.3	125
 Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladium–Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO₂ 	11.1	73
 Angewandte Chemie - International Édition, 2021, 60, 5771-5777. Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & amp; Fuels, 2021, 35, 7624-7636. Two-Dimensional Palladium–Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO₂ Reduction on Converted 	1.6	37
 Two-Dimensional Palladium–Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO₂ Reduction on Converted 	7.2	182
Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098. Sizeâ€Dependent Selectivity of Electrochemical CO ₂ Reduction on Converted	2.5	28
	4.5	59
17 In ₂ 0 ₃ Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 15844-15848.	7.2	71
Sizeâ€Dependent Selectivity of Electrochemical CO ₂ Reduction on Converted In ₂ O ₃ Nanocrystals. Angewandte Chemie, 2021, 133, 15978-15982.	1.6	9

#	Article	IF	CITATIONS
19	Bimetallic PdAu Nanoframes for Electrochemical H ₂ O ₂ Production in Acids. , 2021, 3, 996-1002.		48
20	Largeâ€Area Vertically Aligned Bismuthene Nanosheet Arrays from Galvanic Replacement Reaction for Efficient Electrochemical CO ₂ Conversion. Advanced Materials, 2021, 33, e2100910.	11.1	81
21	Electronic Tuning of Covalent Triazine Framework Nanoshells for Highly Efficient Photocatalytic H ₂ O ₂ Production. Advanced Sustainable Systems, 2021, 5, 2100184.	2.7	40
22	Phaseâ€Dependent Electrocatalytic CO 2 Reduction on Pd 3 Bi Nanocrystals. Angewandte Chemie, 2021, 133, 21909-21913.	1.6	11
23	Highly Dispersed Indium Oxide Nanoparticles Supported on Carbon Nanorods Enabling Efficient Electrochemical CO ₂ Reduction. Small Science, 2021, 1, 2100029.	5.8	34
24	Phaseâ€Dependent Electrocatalytic CO ₂ Reduction on Pd ₃ Bi Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 21741-21745.	7.2	59
25	Co3O4@carbon with high Co2+/Co3+ ratios derived from ZIF-67 supported on N-doped carbon nanospheres as stable bifunctional oxygen catalysts. Materials Today Energy, 2021, 21, 100737.	2.5	25
26	Recent progress, developing strategies, theoretical insights, and perspectives towardsÂhigh-performance copper single atom electrocatalysts. Materials Today Energy, 2021, 21, 100761.	2.5	8
27	Porous polyimide framework based on perylene and triazine for reversible potassium-ion storage. Materials Chemistry Frontiers, 2021, 5, 7184-7190.	3.2	12
28	2D Molecular Sheets of Hydrogenâ€Bonded Organic Frameworks for Ultrastable Sodiumâ€Ion Storage. Advanced Materials, 2021, 33, e2106079.	11.1	55
29	Poly(benzobisthiazole-dione) Frameworks for Highly Reversible Sodium- and Potassium-Ion Storage. Energy & Fuels, 2021, 35, 20367-20373.	2.5	5
30	Valorizing carbon dioxide via electrochemical reduction on gasâ€diffusion electrodes. InformaÄnÃ- Materiály, 2021, 3, 1313-1332.	8.5	37
31	Carbonaceous materials for electrochemical CO2 reduction. EnergyChem, 2020, 2, 100024.	10.1	55
32	Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Research, 2020, 13, 225-230.	5.8	47
33	Molybdenum carbide nanostructures for electrocatalytic polysulfide conversion in lithium–polysulfide batteries. Nanoscale Horizons, 2020, 5, 501-506.	4.1	19
34	Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO ₂ Reduction to Formate. Advanced Energy Materials, 2020, 10, 1902338.	10.2	384
35	β-PdBi2 monolayer: two-dimensional topological metal with superior catalytic activity for carbon dioxide electroreduction to formic acid. Materials Today Advances, 2020, 8, 100091.	2.5	14
36	Efficient and stable electrocatalysts for water splitting. MRS Bulletin, 2020, 45, 531-538.	1.7	10

#	Article	IF	CITATIONS
37	Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Materials Today, 2020, 40, 160-172.	8.3	56
38	Aluminum silicate fiber membrane: A cost-effective substitute for fiber glass separator in Li–O2 battery. Materials Today Energy, 2020, 17, 100485.	2.5	3
39	Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. Coordination Chemistry Reviews, 2020, 422, 213435.	9.5	88
40	Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction. Nano Energy, 2020, 75, 104939.	8.2	66
41	Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts. Rare Metals, 2020, 39, 455-457.	3.6	40
42	Metalâ€Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angewandte Chemie - International Edition, 2020, 59, 14378-14382.	7.2	60
43	Simultaneous power generation and CO ₂ valorization by aqueous Al–CO ₂ batteries using nanostructured Bi ₂ S ₃ as the cathode electrocatalyst. Journal of Materials Chemistry A, 2020, 8, 12385-12390.	5.2	27
44	Mesoporous PdAg Nanospheres for Stable Electrochemical CO ₂ Reduction to Formate. Advanced Materials, 2020, 32, e2000992.	11.1	153
45	Activating Li ₂ S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 2234-2245.	8.8	125
46	Metalâ€Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angewandte Chemie, 2020, 132, 14484-14488.	1.6	7
47	Morphology engineering of cobalt embedded in nitrogen doped porous carbon as bifunctional oxygen electrocatalyst for Zn-air battery. Materials Today Energy, 2020, 17, 100455.	2.5	12
48	Toward Highly Selective Electrochemical CO ₂ Reduction using Metalâ€Free Heteroatomâ€Doped Carbon. Advanced Science, 2020, 7, 2001002.	5.6	48
49	A nature inspired molecular Ni-catalyst for efficient photocatalytic CO2 reduction to CO under visible light. Science China Chemistry, 2020, 63, 1716-1720.	4.2	6
50	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	23.3	284
51	Fastâ€Charging and Ultrahighâ€Capacity Lithium Metal Anode Enabled by Surface Alloying. Advanced Energy Materials, 2020, 10, 1902343.	10.2	65
52	Photocathode engineering for efficient photoelectrochemical CO2 reduction. Materials Today Nano, 2020, 10, 100077.	2.3	52
53	Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. National Science Review, 2020, 7, 1360-1366.	4.6	40
54	Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications. 2D Materials, 2020, 7, 035015.	2.0	25

#	Article	IF	CITATIONS
55	Selectively etched graphene encapsulated CoFe catalyst for zinc-air battery application. Materials Today Energy, 2020, 17, 100438.	2.5	8
56	Recent Progress on Pd-based Nanomaterials for Electrochemical CO ₂ Reduction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	22
57	Photoelectrochemically Active Nâ€Adsorbing Ultrathin TiO ₂ Layers for Waterâ€Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment. Advanced Materials Interfaces, 2019, 6, 1801286.	1.9	16
58	Self-templated synthesis of hierarchical mesoporous SnO ₂ nanosheets for selective CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 1267-1272.	5.2	93
59	Semiconducting 2D Covalent Organic Frameworks: A New Opportunity for Efficient Solar Fuel Production. Chinese Journal of Chemistry, 2019, 37, 1291-1292.	2.6	11
60	Weakening hydrogen adsorption on nickel <i>via</i> interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy and Environmental Science, 2019, 12, 3522-3529.	15.6	177
61	Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Science Bulletin, 2019, 64, 1875-1880.	4.3	54
62	Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Research, 2019, 12, 2250-2258.	5.8	25
63	Salt-templated growth of monodisperse hollow nanostructures. Journal of Materials Chemistry A, 2019, 7, 1404-1409.	5.2	33
64	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 2019, 10, 2807.	5.8	456
65	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	5.2	99
66	Rücktitelbild: Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production (Angew. Chem. 26/2019). Angewandte Chemie, 2019, 131, 9040-9040.	1.6	0
67	Copperâ€Bismuth Bimetallic Microspheres for Selective Electrocatalytic Reduction of CO ₂ to Formate. Chinese Journal of Chemistry, 2019, 37, 497-500.	2.6	50
68	Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2019, 58, 8676-8680.	7.2	230
69	Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2019, 131, 8768-8772.	1.6	67
70	Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy, 2019, 59, 762-772.	8.2	155
71	Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy, 2019, 59, 636-643.	8.2	83
72	Deciphering the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando Synchrotronâ€Based Characterization Techniques. Advanced Energy Materials, 2019, 9, 1900148.	10.2	96

#	Article	IF	CITATIONS
73	Zinc–air batteries: are they ready for prime time?. Chemical Science, 2019, 10, 8924-8929.	3.7	211
74	Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. Journal of Energy Chemistry, 2019, 37, 93-96.	7.1	52
75	Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Research, 2019, 12, 429-436.	5.8	76
76	Controlled chemical etching leads to efficient silicon–bismuth interface for photoelectrochemical CO2 reduction to formate. Materials Today Chemistry, 2019, 11, 80-85.	1.7	31
77	Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 656-661.	10.8	108
78	Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e1805484.	11.1	112
79	Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 24-30.	9.5	52
80	Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nature Communications, 2018, 9, 1320.	5.8	658
81	Rational Synthesis and Assembly of Ni ₃ S ₄ Nanorods for Enhanced Electrochemical Sodium-Ion Storage. ACS Nano, 2018, 12, 1829-1836.	7.3	104
82	2D PdAg Alloy Nanodendrites for Enhanced Ethanol Electroxidation. Advanced Materials, 2018, 30, 1706962.	11.1	243
83	Highly reversible Na and K metal anodes enabled by carbon paper protection. Energy Storage Materials, 2018, 15, 8-13.	9.5	85
84	Solvothermal Synthesis of Alloyed PtNi Colloidal Nanocrystal Clusters (CNCs) with Enhanced Catalytic Activity for Methanol Oxidation. Advanced Functional Materials, 2018, 28, 1704774.	7.8	126
85	ELECTROCATALYTIC PROCESSES IN ENERGY TECHNOLOGIES. , 2018, , 291-341.		0
86	Selective CO ₂ Reduction on 2D Mesoporous Bi Nanosheets. Advanced Energy Materials, 2018, 8, 1801536.	10.2	274
87	High Electrocatalytic Response of Ultra-refractory Ternary Alloys of Ta-Hf-C Carbide toward Hydrogen Evolution Reaction in Acidic Media. Journal of Physical Chemistry C, 2018, 122, 25433-25440.	1.5	16
88	Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Roomâ€Temperature Liâ€S and Naâ€S Batteries. Advanced Energy Materials, 2018, 8, 1800624.	10.2	64
89	Designing effective Si/Ag interface <i>via</i> controlled chemical etching for photoelectrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 21906-21912.	5.2	50
90	Controllable Synthesis of Ordered Mesoporous Mo ₂ C@Graphitic Carbon Core–Shell Nanowire Arrays for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 18761-18770.	4.0	46

#	Article	IF	CITATIONS
91	Tuning the activity/stability balance of anion doped CoS Se2â^ dichalcogenides. Journal of Catalysis, 2018, 366, 50-60.	3.1	17
92	Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction. Nano Letters, 2017, 17, 2003-2009.	4.5	168
93	Highâ€Performance Oxygen Reduction Electrocatalyst Derived from Polydopamine and Cobalt Supported on Carbon Nanotubes for Metal–Air Batteries. Advanced Functional Materials, 2017, 27, 1606034.	7.8	121
94	Photoelectroreduction of Buildingâ€Block Chemicals. Angewandte Chemie - International Edition, 2017, 56, 7181-7185.	7.2	8
95	Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?. ACS Energy Letters, 2017, 2, 1370-1377.	8.8	709
96	Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles. Nano Letters, 2017, 17, 4137-4142.	4.5	128
97	Rücktitelbild: Photoelectroreduction of Buildingâ€Block Chemicals (Angew. Chem. 25/2017). Angewandte Chemie, 2017, 129, 7426-7426.	1.6	0
98	Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction. Carbon, 2017, 121, 143-153.	5.4	71
99	All flexible electrospun papers based self-charging power system. Nano Energy, 2017, 38, 210-217.	8.2	97
100	Li–S batteries: Firing for compactness. Nature Energy, 2017, 2, .	19.8	30
101	Photoelectroreduction of Buildingâ€Block Chemicals. Angewandte Chemie, 2017, 129, 7287-7291.	1.6	5
102	A hierarchical α-MoC _{1â^'x} hybrid nanostructure for lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 8125-8132.	5.2	34
103	Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction. CheM, 2017, 3, 652-664.	5.8	406
104	CO ₂ Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017, 4, 1700194.	5.6	651
105	Influence of crystal phase on TiO ₂ nanowire anodes in sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 20005-20013.	5.2	32
106	Hierarchical VS ₂ Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. Advanced Materials, 2017, 29, 1702061.	11.1	320
107	Promoting Effect of Ni(OH) ₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 2017, 29, 1703057.	11.1	251
108	Amorphous MoS ₃ as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13091-13096.	3.3	170

#	Article	IF	CITATIONS
109	Engineering SnS ₂ nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. Journal of Materials Chemistry A, 2017, 5, 25618-25624.	5.2	79
110	N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy, 2017, 42, 334-340.	8.2	238
111	Amorphous MoS ₃ Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodiumâ€lon Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy Materials, 2017, 7, 1601602.	10.2	164
112	Zinc-Air Batteries: Metallic Cobalt Nanoparticles Encapsulated in Nitrogen-Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc-Air Batteries (Adv. Funct. Mater. 24/2016). Advanced Functional Materials, 2016, 26, 4234-4234.	7.8	4
113	Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS ₂ /Nanotube Composite Lithium Ion Battery Electrodes. ACS Nano, 2016, 10, 5980-5990.	7.3	159
114	Silicon/Organic Heterojunction for Photoelectrochemical Energy Conversion Photoanode with a Record Photovoltage. ACS Nano, 2016, 10, 9411-9419.	7.3	32
115	Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Research, 2016, 9, 3162-3170.	5.8	65
116	Liquid Phase Exfoliated MoS ₂ Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. ACS Nano, 2016, 10, 8821-8828.	7.3	258
117	Mo ₂ C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient Electrocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 11337-11343.	7.3	483
118	Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP ₂ Cocatalyst Films. ACS Applied Materials & Interfaces, 2016, 8, 31025-31031.	4.0	46
119	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	5.8	334
120	Metallic Cobalt Nanoparticles Encapsulated in Nitrogenâ€Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc–Air Batteries. Advanced Functional Materials, 2016, 26, 4397-4404.	7.8	350
121	Mo <i>_x</i> W _{1â^'} <i>_x</i> (S <i>_y</i> Se _{1â^'} <i>_x</i> Alloy Nanoflakes for Highâ€Performance Electrocatalytic Hydrogen Evolution. Particle and Particle Systems Characterization, 2016, 33, 576-582.		0>) < sub> 24
122	MoS ₂ Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis. Chemistry of Materials, 2016, 28, 2074-2080.	3.2	130
123	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	6.0	1,948
124	CuWO ₄ Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 9211-9217.	4.0	81
125	Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Research, 2016, 9, 1497-1506.	5.8	112
126	TiS 2 nanoplates: A high-rate and stable electrode material for sodium ion batteries. Nano Energy, 2016, 20, 168-175.	8.2	137

#	Article	IF	CITATIONS
127	Iron-based sodium-ion full batteries. Journal of Materials Chemistry A, 2016, 4, 1754-1761.	5.2	50
128	Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14942-14962.	5.2	1,061
129	Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Research, 2015, 8, 1577-1583.	5.8	63
130	Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 16348-16353.	5.2	209
131	Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy, 2015, 15, 654-661.	8.2	63
132	Controllably Interfacing with Ferroelectric Layer: A Strategy for Enhancing Water Oxidation on Silicon by Surface Polarization. ACS Applied Materials & amp; Interfaces, 2015, 7, 25601-25607.	4.0	24
133	The structural and electronic properties of spinel MnCo2O4 bulk and low-index surfaces: From first principles studies. Applied Surface Science, 2015, 349, 510-515.	3.1	32
134	Ultrathin MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2213-2219.	5.5	473
135	<i>In Situ</i> X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH) _{<i>x</i>} Electrocatalyst on Carbon Paper for Water Oxidation. Journal of Physical Chemistry C, 2015, 119, 19573-19583.	1.5	146
136	Nanostructured CuP ₂ /C composites as high-performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21754-21759.	5.2	113
137	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	5.8	466
138	MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 2015, 8, 1108-1115.	5.8	70
139	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	6.0	2,376
140	Ultrathin WS ₂ Nanoflakes as a Highâ€₽erformance Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7860-7863.	7.2	622
141	Cobalt Hexacyanoferrate Nanoparticles as a High-Rate and Ultra-Stable Supercapacitor Electrode Material. ACS Applied Materials & Interfaces, 2014, 6, 11007-11012.	4.0	171
142	Nanocarbon-Based Hybrid Materials for Electrocatalytical Energy Conversion: Novel Materials and Methods. IEEE Nanotechnology Magazine, 2014, 8, 22-28.	0.9	4
143	Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Physical Chemistry Chemical Physics, 2014, 16, 15787.	1.3	84
144	Recent advances in zinc–air batteries. Chemical Society Reviews, 2014, 43, 5257-5275.	18.7	1,882

#	Article	IF	CITATIONS
145	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	15.6	265
146	High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science, 2013, 342, 836-840.	6.0	630
147	WS2 nanoflakes from nanotubes for electrocatalysis. Nano Research, 2013, 6, 921-928.	5.8	103
148	Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 2013-2036.	6.6	856
149	Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013, 4, 1805.	5.8	976
150	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	6.6	2,498
151	An Integrated Peptide-Antigen Microarray on Plasmonic Gold Films for Sensitive Human Antibody Profiling. PLoS ONE, 2013, 8, e71043.	1.1	27
152	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	6.6	747
153	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	5.8	104
154	Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 3517-3523.	6.6	1,266
155	Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy and Environmental Science, 2012, 5, 7931.	15.6	393
156	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	15.6	1,533
157	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	5.8	347
158	Controlled Chlorine Plasma Reaction for Noninvasive Graphene Doping. Journal of the American Chemical Society, 2011, 133, 19668-19671.	6.6	211
159	Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 2011, 11, 2644-2647.	4.5	1,973
160	Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10, 780-786.	13.3	5,120
161	MoS ₂ Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2011, 133, 7296-7299.	6.6	4,572
162	Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Research, 2011, 4, 124-130.	5.8	35

#	Article	IF	CITATIONS
163	Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dualâ€Targeted Photothermal Therapy. Angewandte Chemie - International Edition, 2011, 50, 7385-7390.	7.2	567
164	LiMn _{1â^'<i>x</i>} Fe _{<i>x</i>} PO ₄ Nanorods Grown on Graphene Sheets for Ultrahighâ€Rateâ€Performance Lithium Ion Batteries. Angewandte Chemie - International Edition, 2011, 50, 7364-7368.	7.2	262
165	Co _{1â^'<i>x</i>} S–Graphene Hybrid: A Highâ€Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction. Angewandte Chemie - International Edition, 2011, 50, 10969-10972.	7.2	413
166	Ni _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ Nanowire Arrays for Electrocatalytic Oxygen Evolution. Advanced Materials, 2010, 22, 1926-1929.	11.1	837
167	Critical Role of Screw Dislocation in the Growth of Co(OH) ₂ Nanowires as Intermediates for Co ₃ O ₄ Nanowire Growth. Chemistry of Materials, 2010, 22, 5537-5542.	3.2	56
168	Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Research, 2009, 2, 54-60.	5.8	53
169	Mesoporous Nb-Doped TiO ₂ as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 7456-7460.	1.5	59
170	Coassembly of Graphene Oxide and Nanowires for Large-Area Nanowire Alignment. Journal of the American Chemical Society, 2009, 131, 5851-5857.	6.6	195
171	Ammonia-Evaporation-Induced Synthetic Method for Metal (Cu, Zn, Cd, Ni) Hydroxide/Oxide Nanostructures. Chemistry of Materials, 2008, 20, 567-576.	3.2	142
172	Mesoporous Co ₃ O ₄ Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters, 2008, 8, 265-270.	4.5	1,234
173	Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2007, 129, 4162-4163.	6.6	379
174	Freestanding Mesoporous Quasi-Single-Crystalline Co3O4Nanowire Arrays. Journal of the American Chemical Society, 2006, 128, 14258-14259.	6.6	338
175	Synthesis and Electrochemical Properties of Semicrystalline Gyroidal Mesoporous MnO2. Chinese Journal of Chemistry, 2006, 24, 835-839.	2.6	31
176	Soft Template Synthesis of Highly Crystalline Microscale Nanotubules of PbO. Chemistry Letters, 2005, 34, 1226-1227.	0.7	5
177	Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process. Solid State Communications, 2005, 134, 485-489.	0.9	156
178	Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochemistry Communications, 2002, 4, 499-502.	2.3	291